검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 51

        44.
        2007.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        About 10 percent of quasars are known to exhibit deep broad absorption troughs blueward of prominent permitted emission lines, which are usually attributed to the existence of outflows slightly above he accretion disk around the supermassive black hole. Typical widths up to 0.2c of these absorption roughs indicate the velocity scales in which special relativistic effects may not be negligible. Under he assumption of the ubiquity of the broad absorption line region in quasars, the broad emission line flux will exhibit Thomson scattered components from these fast outflows. In this paper, we provide our Monte Carlo calculation of linear polarization of singly Thomson scattered line radiation with the careful considerations of special relativistic effects. The scattering region is approximated by a collection of rings that are moving outward with speeds υ =cβ < 0.2c near the equatorial plane, and the scattered line photons are collected according to its direction and wavelength in the observer's rest frame. We find that the significantly extended red tail appears in the scattered radiation. We also find that the linear degree of polarization of singly Thomson scattered line radiation is wavelength-dependent and hat there are significant differences in the linear degree of polarization from that computed from classical physics in the far red tail. We propose that the semi-forbidden broad emission line C III]1909 may be significantly contributed from Thomson scattering because this line has small resonance scattering optical depth in the broad absorption line region, which leads to distinct and significant polarized flux in this broad emission line.
        4,000원
        45.
        2007.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Quasars at cosmological distances can be gravitationally lensed by galaxies into two or more images. The probability of this lensing and the angular separation between the images depend on the geometry and the expansion history of the universe as well as the lensing galaxies. The time delay between lensed images is also a direct indicator of the size of the universe. I review these cosmological applications of multiple-image gravitationally lensed quasars to determine or constrain the cosmological parameters.
        5,500원
        46.
        2005.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this paper, we argue that the gigahertz peaked spectrum (GPS) quasars are special blazars, blazars in dense and dusty gas enviornment. The ROSAT detection rate of GPS quasars is similar to that of flat spectrum radio quasars (FSRQs), suggesting that the relativistic jets in GPS quasars are oriented at small angle to the line of sight. Due to strong inverse Compton scattering off infrared photons from dense and dusty nuclear interstellar media in GPS quasars, most of them may have significant soft gamma-ray and X-ray emission, which is consistent with ASCA X-ray observations. Because Compton cooling in GPS quasars is stronger than that in FSRQs, synchrotron emission in GPS quasars may less dominate over thermal emission of the accretion disk and hot dust, hence most GPS quasars show low optical polarization and small variability, consistent with observations. We suggest that it is the significant radio emission of electron/positron pairs produced by the interaction of gamma-rays with the dense gas and dust grains in GPS quasars that makes GPS quasars show steep radio spectra, low radio polarization, and relatively faint VLBI/VLBA cores. Whether GPS quasars are special blazars can be tested by gamma-ray observations with GLAST in the near future, with the detection rate of GPS quasars being similar to that of FSRQs.
        3,000원
        49.
        2003.04 구독 인증기관·개인회원 무료
        50.
        1996.12 KCI 등재 SCOPUS 구독 인증기관·개인회원 무료
        1 2 3