본 논문은 강 뼈대 구조물의 보-기둥 접합부의 사실적인 상태를 묘사하기 위하여 부분구속 접합부(Partially Restrained (PR) connections)를 고려한 지진하중 상태하의 신뢰성 해석과 접합부 및 그들에 내재된 불확실성이 구조물의 위험도에 미치는 영향에 관한 연구이다. 신뢰성해석을 위하여 응답면기법(Response Surface Method), 유한요소법(Finite Element Method), 일차신뢰도법(First Order Reliability Method), 그리고 반복선형보간 기법(Iterative Linear Interpolation Scheme)을 효과적으로 결합한 추계유한요소법(Stochastic Finite Element Method)을 제안하였다 일반적으로 모멘트-상대회전각 곡선에 의해서 표현되는 보-기둥에 대한 부분구속 접합부(PR connections)의 거동이 본 논문에서는 네 개의 매개변수를 사용하는 리차드 모델(Four-parameter Richard Model)을 사용하여 모사하였다. 지진하중에 대하여, 부분구속 접합부에서의 재하(Loading), 제하(Unloading) 및 재재하(Reloading) 거동은 모멘트-상대회전각 곡선과 Masing법칙을 사용하여 표현하였다. 시간영역에서 지진가속도를 구조물에 작용시킴으로써 지진하중의 사실적인 재현을 도모하였다. 다양한 주요 비선형성의 원인들을 고려한 부분구속 접합부를 가지는 강 뼈대 구조물의 신뢰성해석이 지진위험도를 평가하기 위하여 수행되었다. 제안된 기법의 명확한 이해를 돕기 위하여 한 예제를 제시하였다.
유전자 알고리즘(GA)은 어떠한 유형의 문제에도 적용가능하며 달리 방법이 없는 경우 최후의 수단으로 흔히 사용되는 방법이다. 강구조물 설계란 기본적으로 구조물을 이루는 부재로서 어떤 재료를 선택될 것인지를 결정하는 문제이다. 따라서 천문학적인 숫자의 설계가 존재하며 이들 중 최적의 설계를 탐색하는 것은 대체로 불가능한 일이다. 본 논문에서는 GA와 이와 관련된 여러 가지 기법들을 소개하고 강구조물 최적설계에 이들의 활용을 모색하였다. 작은 설계공간을 가지는 문제에서는 GA로 전역최적설계를 찾을 수 있었다. GA는 또한 연속변수 최적설계 문제에서도 최적설계를 찾았으며 구조물 최적설계에 적용될 수 있음을 보였다. 그러나 규모가 큰 현실문제에서는 GA가 최적 또는 최적에 근접한 설계를 항상 찾을 수 있을 것이라고 기대하기는 어려울 것으로 생각된다. GA에 G bit improvement를 추가하여 수행한 경우에 더 좋은 최적설계 결과를 보여주었으며 앞으로 이 부분의 연구가 활발해 질 것이다.