An Ant Colony Optimization Algorithm(ACO) is one of the frequently used algorithms to solve the Traveling Salesman Problem(TSP). Since the ACO searches for the optimal value by updating the pheromone, it is difficult to consider the distance between the nodes and other variables other than the amount of the pheromone. In this study, fuzzy logic is added to ACO, which can help in making decision with multiple variables. The improved algorithm improves computation complexity and increases computation time when other variables besides distance and pheromone are added. Therefore, using the algorithm improved by the fuzzy logic, it is possible to solve TSP with many variables accurately and quickly. Existing ACO have been applied only to pheromone as a criterion for decision making, and other variables are excluded. However, when applying the fuzzy logic, it is possible to apply the algorithm to various situations because it is easy to judge which way is safe and fast by not only searching for the road but also adding other variables such as accident risk and road congestion. Adding a variable to an existing algorithm, it takes a long time to calculate each corresponding variable. However, when the improved algorithm is used, the result of calculating the fuzzy logic reduces the computation time to obtain the optimum value.
It is one of the known methods to obtain the optimal solution using the Ant Colony Optimization Algorithm for the Traveling Salesman Problem (TSP), which is a combination optimization problem. In this paper, we solve the TSP problem by proposing an improved new ant colony optimization algorithm that combines genetic algorithm mutations in existing ant colony optimization algorithms to solve TSP problems in many cities. The new ant colony optimization algorithm provides the opportunity to move easily fall on the issue of developing local optimum values of the existing ant colony optimization algorithm to global optimum value through a new path through mutation. The new path will update the pheromone through an ant colony optimization algorithm. The renewed new pheromone serves to derive the global optimal value from what could have fallen to the local optimal value. Experimental results show that the existing algorithms and the new algorithms are superior to those of existing algorithms in the search for optimum values of newly improved algorithms.