두꺼운 난류경계층 내에 일정한 간격을 가진 정입방체(150d×150w×150h)주위의 유동특성에 대해 연구를 수행하였다. 본 연구는 건물주위에 다른 건물이 위치함으로써 건물에 미치는 영향을 알아보기 위해 큐브의 표면압력분포를 조사하였다. 큐브 양옆에 같은 크기의 큐브를 3가지타입의 간격을 두고 위치해서 그 유동특성을 파악하였으며 이 때 실험에 적용된 레이놀즈수는 4.5×104, 6.7×104(큐브의 높이 h에서 측정된 유속 U=4.9m/s, 7.3m/s)에서 실시되었다. 결론으로 건물주위에 다른 건물이 위치함으로써 표면근처의 유동특성에 상당한 영향을 나타내고 있다.
건물군 내의 난류 유동에 의한 오염물질 확산을 LES 기법을 이용해 해석하였다. 본 연구의 동기는 복잡한 건물 내의 오염물질 확산을 효과적으로 예측하려는 노력에 기인한다. 결과적으로 확보될 예측 기술은 화학적으로 치명적인 재난을 예방하거나 기발생된 사고에 대한 빠른 대처를 가능케 할 것이다. 우선, 채널 내 난류 유동에 의한 농도 확산 및 단일 큐브 주위의 농도확산에 대한 타 연구 결과와의 비교를 통해 본 코드의 검증을 수행하였다. 그 다음에 도심 도로변의 배기가스에 의한 대기 오염을 모사하였다. Lagrangian dynamic subgrid-scale model이 유동장 및 농도장에 대한 난류 모델기법으로서 사용되었으며 log-law에 기반을 둔 유동장에 대한 벽모델이 바닥면과 건물 표면에 적용 되었다. 건물의 형상은 가상경계법을 이용해 직교좌표계에서 구현되었다.
본 연구는 LES를 이용해 건물군 주위의 풍환경을 수치적으로 해석하였다. 본 연구의 동기는 강풍 피해에 대한 위험도 평가 기술을 개발하려는 노력에 기인한다. Lagrangian dynamic subgrid-scale model이 난류 모델링으로서 사용되었으며 log-law에 기반을 둔 벽모델이 바닥면과 건물 표면에 적용되었다. 건물의 형상은 가상경계법을 이용해 구현되었으며 직교좌표계를 이용하였다. 위험도 평가에서 중요한 인자는 평균 물리량 뿐만 아니라 그 RMS 값이다. 몇몇 선택된 건물의 표면과 그 주위의 압력 및 속도, 난류 강도 등을 도시화하였으며, 특히 사람 높이에서의 그러한 물리량들의 평균과 RMS값을 도시함으로써 인간에 대한 직접적인 위험도를 예측하였다.