검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        해상교통관제센터(VTS)의 관제사는 구역 내 교통 상황을 빠르고 정확하게 파악하여 관제가 필요한 선박에게 정보를 제공하는 역할을 수행한다. 그러나 교통량이 급격히 증가하는 경우 관제사의 업무 부하로 인해 관제 공백이 발생하기도 한다. 이러한 이유에서 관 제사의 업무 부하를 줄이고, 일관성 있는 관제 정보를 제공할 수 있는 관제 지원 기술의 개발이 필요한 실정이며, 본 논문에서는 구역 내 이상 운항 선박을 자동으로 식별하는 모델을 제안하였다. 제안하는 이상 운항 식별 모델은 규칙 기반 모델, 위치 기반 모델, 맥락 기반 모 델로 구성되며, 대상 해역의 교통 특성에 최적화된 교통 네트워크 모델을 사용하는 특징이 있다. 구현된 모델은 시범센터(대산항 VTS)에 서 수집되는 실해역 데이터를 적용하여 실험을 수행하였다. 실험을 통해 실해역의 다양한 이상 운항 상황이 자동으로 식별됨을 확인하였 고, 전문가 평가를 통해 식별 결과를 검증하였다.
        4,000원
        2.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : In this study, model-agnostic methods are applied for interpreting machine learning models, such as the feature global effect, the importance of a feature, the joint effects of features, and explaining individual predictions. METHODS : Model-agnostic global interpretation techniques, such as partial dependence plot (PDP), accumulated local effect (ALE), feature interaction (H-statistics), and permutation feature importance, were applied to describe the average behavior of a machine learning model. Moreover, local model-agnostic interpretation methods, individual conditional expectation curves (ICE), local surrogate models (LIME), and Shapley values were used to explain individual predictions. RESULTS : As global interpretations, PDP and ALE-Plot demonstrated the relationship between a feature and the prediction of a machine learning model, where the feature interaction estimated whether one feature depended on the other feature, and the permutation feature importance measured the importance of a feature. For local interpretations, ICE exhibited how changing a feature changes the interested instance’s prediction, LIME explained the relationship between a feature and the instance’s prediction by replacing the machine model with a locally interpretable model, and Shapley values presented how to fairly contribute to the instance’s prediction among the features. CONCLUSIONS : Model-agnostic methods contribute to understanding the general relationship between features and a prediction or debut a model from the global and/or local perspective, securing the reliability of the learning model.
        4,500원