구조용 강재의 용접부는 강재(Base metal, BM), 용접모재(Weld metal, WM), 열영향부(Heat affected zone, HAZ)로 구성된다. 용접부를 구성하는 이들 세 부분의 구조적 성질은 서로 다를 것이므로, 강재의 용접부의 구조 거동은 BM, WM, HAZ로 구성된 복합체의 거동으로 고려할 수 있다. 본 연구에서는 용접부를 구성하는 BM, WM, HAZ 각각의 탄성계수를 나노압입으로 도출하고, 이들의 복합거동(composite action)을 고려한 용접부의 등가탄성계수(equivalent elastic modulus)를 산정하였다.
In this paper, the corrosion fatigue crack propagation behavior of structure rolled steel (SWS 41C) was investigated by changing the thickness, and this experiment was done by the three point bending corrosion fatigue tester. The main results obtained are as follows: 1) As the thickness of specimen becomes thicker, the corrosion sensitivity to initial stage crack becomes some sensitive, and that the fatigue life becomes more sensitive. 2) The crack growth rate to initial stage crack (da/dN) was retarded as the thickness of specimen becomes thicker. But after initial stage crack, as the thickness of specimen is more thicker, da/dN is more rapid. 3) As the corrosion fatigue crack length grows, the accelerative factor of thick specimen (t=12mm) is more higher than that of thin specimen (t=6mm). 4) As the corrosion fatigue crack length grows, the corroson potential of both thick specimen and thin specimen becomes more less noble potential, however thick specimen (t=12mm) tends to more less noble potential than that of thin specimen(t=6mm).