검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2012.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        막 구조물은 연성의 막에 초기 장력을 주고 외관의 강성을 늘림으로써 외부하중에 안정된 형태를 유지하는 구조물로 두께를 얇게 하여 대공간 구조에 많이 채택된다. 이러한 막 구조는 자유로운 곡선을 표현할 수 있는 특성이 있어, 구조적 형태의 선정은 매우 중요하다. 이에 본 논문에서는 넙스를 기저함수로 하는 비정형 곡면으로 형상을 표현하고, 최적의 곡면 형상 탐색을 위한 대변형 결과값 도출을 위해 기하학적 비선형을 고려한 유한요소해석법을 제안하였다. 또한, 형상 탐색 결과로 나타난 곡면의 형상 근사화의 최소화를 위해 유한 요소망으로 표현된 최종 형상을 다시 넙스로 구현하는 인터페이스 기법을 제안하여, 비정형 막 구조물의 최적 곡면을 표현하였다.
        4,000원
        2.
        2003.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, a finite element model is presented for geometrically non-linear analysis of shell structures. Finite element by using a three-node flat triangular shell element is formulated. The non-linear incremental equilibrium equations are formulated by using an updated Lagrangian formulation and the solutions are obtained with the incremental/iterative Newton-Raphson method and arc length method. Some of results are presented for shell structures. The obtained results are in good agreement with the results available in existing literature.
        4,000원
        3.
        2000.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        보강된 판 및 쉘구조의 기하학적 비선형해석을 수행하기 위하여, total lagrangian formulation에 근거한 증분 평형방정식을 적용하고, 강도행렬 산정시 회전각의 2차항을 포함시켜 기하학적 비선형 해석시 해의 수렴성을 향상시켰으며, 보강된 쉘 구조의 해석시 보강재를 쉘 요소로 모델링하고 주부재와 보강재의 연결점에서 일반적인 변환관계를 이용하였다. 등매개 쉘 유한요소의 단점인 locking 현상을 극복하기 위하여 가정 변형률장을 적용하여 감차적분 또는 선택적분시 나타날 수 있는 제로 에너지 모드를 제거하였다. 수치해석 예제를 통하여 가정 변형률장에 근거한 쉘유한요소에 대한 효율성 및 적용성을 확인하였다.
        4,300원
        4.
        1997.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        복잡한 구조물의 거동을 해석하는 데 있어서 초기 설계단계에서 부터 쉘요소를 사용하여 해석하는 것은 많은 시간과 경비가 요구된다. 이에 경비절감의 측면에서 쉘구조물을 단순 보구조물에 의해 모델링함에 의해 분석하고자 하는 연구가 진행되어왔다. 본 연구에서는 단순화된 보구조물의 결합부에 고려하기 위한 유연도를 나타내는 굽힘회전강성을 결정하는 방법을 제안하고, 제안된 방법을 통해 얻어진 결합부에서의 유연도을 보구조물의 결합부에 적용하여 비선형해석을 수행한다. 수치해석 결과로 쉘구조물에서 나타나는 기하학적 비선형거동을 결합부에서 유연도를 고려하는 단순 보구조물에 의해 작은 오차의 범위안에서 기술할 수 있었다.
        4,200원
        5.
        1997.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        공간뼈대의 구조에 대하여 기하학적 비선형성이 고려될 수 있는 유한요소이론 및 해석법을 제시한다. 이를 위하여 가상일의 원리를 이용하여 대변형효과를 고려한 3차원 연소체의 평형방정식으로부터, 구속된(restrained warping)효과를 무시하고 유한한 회전각의 2차항의 효과를 포함하는 변위장을 도입하여 초기응력을 받는 공간뼈대요소의 증분평형방정식을 유도한다. 공간뼈대구조를 유한요소로 나누어 요소의 변위장을 요소변위 벡터에 관한 Hermitian다항식으로 나타내고 이를 평형방정식에 대입함으로써 탄성 및 가하학적인 강도행렬을 유도한다. 또한 updated Lagrangian co-rotational formulation에 근거하여, 증분변위로부터 강체회전변위와 순수변형성분을 분리시켜서 강체회전은 요소의 방향변화를 결정하고, 순수변형은 부재력증분을 산정하는 불평형하중 산정법을 제시한다. 공간뼈대구조의 횡-비틂좌굴 및 후좌굴 거동에 대한 예제들을 통하여 본 연구에 대한 해석결과와 문헌의 결과를 비교 검토함으로써 본 연구에서 제시된 이론 및 해석방법의 정당성을 입증한다.
        4,200원