This study focused on optimizing the digital light processing (DLP) 3D printing process for high-precision ceramic components using alumina-based slurries. Key challenges, such as cracking during debinding and precision loss due to slurry sedimentation, were addressed by evaluating the exposure time and the nano-to-micro alumina powder ratios. The optimal conditions—exposure time of 15 seconds and a 1:9 mixing ratio—minimized cracking, improved gas flow during debinding, and increased structural precision. Microchannels with diameters above 1.2 mm were successfully fabricated, but channels below 0.8 mm faced challenges due to slurry accumulation and over-curing. These results establish a reliable process for fabricating complex ceramic components with improved precision and structural stability. The findings have significant potential for applications in high-value industries, including aerospace, energy, and healthcare, by providing a foundation for the efficient and accurate production of advanced ceramic structures.
The effect of PEMFC trapezoidal channel wall contact angle on water removal characteristics is
investigated with the volume of fluid (VOF) method. Two different contact angles 60 and 90 degrees
are selected. In the case of the side and top wall contact angle of 60 degrees, stable semi-spherical
droplets move along the top wall slowly. In contrast, complex shaped droplets move along the lower
edge in the case of 90 degrees. Moreover, it is shown that very complex interaction patterns between
different droplets which introduced into the channel at different times.