본 논문에서는 2개 이상의 기하형상이 순응 또는 비순응 경계면에서 접합된 멀티패치 문제에 대한 아이소-지오메트릭 해석에 대해서 연구하였다. 패치 경계면에서 응력의 연속성을 표현하는 방법으로 Nitsche 방법론과 마스터-슬레이브 방법에 기반한 방법론에 대해서 지배방정식을 유도하고 아이소-지오메트릭 이산화를 수행하였다. 멀티패치 문제에 대해서 두 방법 론의 차이점을 간단하게 비교하였으며, 후처리 과정에서 사용되는 NURBS 곡면 기반의 응력 복원법에 대해서 기술하였다. 수치예제에서 비순응 경계면을 가지는 멀티패치 빔 문제를 통해 Nitshce 방법론을 검증하였으며, 응력집중을 가지는 문제에서 소개된 두 방법론이 유사한 결과를 보이는 것을 확인하였다. 소개된 NURBS 곡면 기반의 응력 복원법을 후처리에서 도입할 경우 멀티패치 문제의 경계면에서 개선된 연속적인 응력을 보임을 알 수 있다.