층상 반무한체에서의 확률론적 완전파형역산을 위한 Markov chain Monte Carlo (MCMC) 모사 기법을 정식화한다. Thin-layer method를 사용하여 조화 수직 하중이 작용하는 층상 반무한체의 지표면에서 추정된 동적 응답과 관측 데이터와의 차이 및 모델 변수 의 사전 정보와의 차이를 최소화하도록 목적함수와 모델 변수의 사후 확률밀도함수를 정의한다. 목적함수의 기울기에 기반하여 MCMC 표본을 제안하기 위한 분포함수와 이를 수락 또는 거절할지 결정하는 수락함수를 결정한다. 기본 진동모드 뿐만이 아니라 고 차 진동모드가 우세한 경우를 포함하여 다양한 층상 반무한체의 전단파 속도 추정에 제안된 MCMC 모사 기법을 적용하고 그 정확성 을 검증한다. 제안된 확률론적 완전파형역산을 위한 MCMC 모사 기법은 층상 반무한체의 전단파 속도와 같은 재료 특성의 확률적 특 성을 추정하는 데 적합함을 확인할 수 있다.
본 연구에서는 강풍 위험 모델과 강풍 취약도 모델을 개발하여 옥외 광고물의 강풍 위험도를 정량적으로 평가하였다. 강풍 위험 모델과 강풍 취약도 모델 모두 확률론적 접근법인 몬테카를로 모사 모형을 적용하여 개발되었으며, 강풍 위험도 모델은 평가된 강풍 위험과 강풍 취약도의 수학적 계산을 통해서 평가되었다. 강풍 위험은 국내 내륙과 해안지역의 대도시인 서울과 부산 지역에 대하여 평가되었으며, 강풍 취약도 모델은 현장 조사와 문헌 조사를 통하여 파악된 10종의 벽면 이용형, 8종의 돌출형 옥외 광고물을 대상으로 개발되었다. 강풍 위험도에 영향을 미치는 요인을 파악하기 위하여 지표조도구분, 옥외 광고물의 형태, 설치 지역, 설치 높이 등에 따른 강풍 위험도를 정량적으로 평가하였다. 본 연구에서 제안한 강풍 위험도 평가 방법은 강풍으로 인한 옥외 광고물의 손실 추정 및 피해 저감 대책 수립을 위하여 활용될 수 있을 것으로 판단된다.
의료용 사이크로트론은 방사성의약품을 생산하기 위해 양성자를 고속으로 가속시켜 핵반응을 일으키게 되며, 핵반응을 통해 불필요한 중성자가 발생하게 된다. 중성자는 사이클로트론의 부품에 방사화를 일으키는 원인으로 종사자들의 피폭의 원인이 된다. 이에 본 연구에서는 핵반응이 일어나는 Targetry 부품들인 Aluminum body, Silver body, Havar foil의 방사화 정도를 분석하여 피폭선량을 알아보고자 하였다. 실험결과 Aluminum body와 Silver body는 방사화된 핵종들의 에너지가 작고, 반감기가 짧아 종사들에게 미치는 선량이 미미하였으며, 재사용하는데 문제가 없었다. 하지만 Havar foil의 경우 방사화된 핵종들의 에너지가 높고 반감기가 길어 종사자들에게 미치는 영향이 매우 높았으며, 방사성폐기물로써 특별한 관리가 필용한 것으로 나타났다.
방사선 특히, 엑스선 또는 감마선으로부터 인체를 보호하기 위해 납(Pb)으로 된 보호 장구를 광범위하게 사용해왔다. 최근 납 중독 및 환경오염의 문제로 납을 대신하는 무연 방사선 차폐재의 개발이 활발히 이루 어지고 있다. 차폐재의 성능 확보를 위해서는 제작 및 평가의 순환 사이클을 반복하게 된다. 본 연구는 실제 무연 방사선 차폐소재의 제작에 앞서 차폐재의 성능을 몬테카를로 전산모사를 통해 확인함으로써 가능한 차폐소재의 조합을 연구하였다. 방사선 차폐소재의 평가에 사용되는 조건으로 엑스선관을 Geant4를 이용하여 전산모사하고 획득된 광자 스펙트럼을 이용하여 텅스텐과 비스무스의 조합에 따른 차폐소재의 성능을 평 가하였다. 차폐소재의 공극에 따른 성능 저하도 평가하였다. 방사선 차폐 소재 개발 시 공극률을 줄이는 것 이 중요한 인자라는 것을 알 수 있었다.