본 논문에서는 다양한 문제들의 형상 설계 민감도 해석에 대한 효율적인 경계기반 기법을 제시하였다 우선 문제에서 정의된 일반적인 함수들에 대한 연속체 형태의 식에 근거하여, 경계 적분 형태의 해석적 민감도 식을 유도하였다. 이 식은 다양한 형상 설계 문제들의 경사를 계산하는데 편리하게 사용할 수 있다. 그리고 경계법은 형상 변분 벡터가 전체 도메인이 아닌 경계에서만 요구된다는 장점이 있는데, 여기서 경계 형상 변분은 형상 함수의 복잡한 해석적 미분 대신 형상을 미소 증분시킴으로써 편리하게 계산할 수 있다. 제시한 방법의 효율성을 보이기 위해 포텐셜 유동 문제와 필렛(fillet)에서의 응력 집중 문제에 이를 적용하였다.
평면 아치 구조물에 대해 선형 탄성 변분방정식에 기반을 둔 설계민감도 해석을 위한 일반적 이론을 개발하였다. 아치 구조물내의 임의 마디에 정의된 응력범함수를 고려하였고 이에 대한 설계민감도 공식을 유도하기 위해 전미분(material derivative) 개념과 보조(adjoint) 변수 방법을 도입하였다. 얻어진 민감도 공식은 구조해석 결과를 얻고 나면 이들로부터 단순 대수연산을 통해 계산이 되므로 적용이 간편할 뿐 아니라 해의 정확도가 높은 잇점이 있다. 본 방법은 아치의 형상을 매개변수를 통해 표현하므로 얕은 아치에 국한하지 않고 어떠한 형상도 고려가 가능하며, 나아가서 아치의 형상변화를 형상에 대해 수직뿐 아니라 접선방향도 포함하여 일반적으로 고려하므로 다양한 형상설계가 가능하다. 몇 가지 예제에서 민감도 계산을 수행함으로써 본 방법의 정확도와 효율성을 입증하였으며, 두 가지의 설계최적화 문제를 대상으로 실제로 두께 및 형상최적설계를 수행하였다.
전미분 개념과 보조변수식을 사용하여 한 평면상에 투영할 수 없는 일반 형상의 축대칭 쉘 구조물에 대한 형상 설계민감도 해석방법을 개발하였다. 이 방법의 기본 개념은 대상 구조물을 여러 구간으로 나눈후, 각 구간마다에 얕은 아치나 축대칭 쉘에 사용되는 설계민감도 식을 적용하는 것이다. 그러나 기존의 설계민감도식은 투영면에 수직한 방향의 변분에 관한 것이기 때문에 각 구간 사이의 연속성을 유지하기가 곤란하므로, 이식을 확장하여 곡면의 법선 방향 변분에 관한 민감도 식을 유도하였다. 또한 개발된 방법을 원자력발전소 부품의 최적설계 문제에 적용하여 봄으로써 그 타당성과 유용성을 보였다.