멀티모달 최적화알고리듬의 일종인 ISPSO와 불확실도분석기법인 GLUE를 결합한 ISPSO-GLUE 기법을 TOPMODEL의 불확실도분석에 적용하였으며, 그 결과를 GLUE 기법과 비교하였다. 두 기법 모두 같은 횟수만큼 모형을 실행하였을 때 ISPSO-GLUE 기법의 누적성능이 더 좋아지는 시점을 발견할 수 있었으며, 그 이후로도 ISPSO-GLUE 기법은 GLUE 기법과는 달리 점진적인 성능의 향상을 보여 주었다. 두 기법이 비슷한 모양과 양상의 95% 불확실도구간을 생성하였다. 하지만 ISPSO-GLUE 기법이 약 5.4배 더 많은 관측치를 포함하는 것으로 나타났으며 GLUE 기법에 비해 훨씬 적은 횟수의 모형실행으로도 좋은 성능의 불확실도구간을 얻을 수 있는 것으로 나타났다. ISPSO-GLUE 기법과 비교했을 때 GLUE 기법이 최대 첨두유량의 감쇠곡선 부분에서 불확실도를 과대평가하였다. 이 시간대에 대해서는 GLUE의 경우 불확실도를 줄이기 위해 더 많은 행동모형들을 찾을 필요가 있다. ISPSO-GLUE 기법이 정량적인 성능평가에서 훨씬 많은 관측치를 포함할 수 있었다는 것은 이 기법의 가능성을 잘 보여 주었다고 할 수 있으며, 특히 계산적으로 값비싼 수문모형에서는 보다 큰 성능의 차이를 보일 것으로 기대된다.
본 연구(II)에서는 앞선 연구(I)에서 개발된 모형의 적용성을 증명하기 위해 2가지 등경사 가상유역에 대해 적용하였다. 먼저, 불투수조건의 1차원 흐름 추적에 대해 적용하고, 두 번째로 원추모양의 일부분처럼 되어있는 V자형 불투수 가상유역에 2차원 흐름추적을 적용하였다. 각자의 경우에서 모형의 결과와 관측치는 잘 일치하였다. 또한, 본 도형을 8의 유역면적을 가지는 설마천 유역과 33.2의 유역면적을 가지는 동곡 유역에 각각 적용하였고, 모의된 결과는