본 연구는 보행자용 방호울타리의 구조 재료를 FRP로 대체하는 경우의 구조적 타당성을 동적 조건에서 검토하였다. ABAQUS/Explicit 기반의 비선형 충돌 해석을 통해 FRP 복합재 방호울타리의 충돌 거동을 분석하였으며, 각 재료의 비선형성을 반영 한 적절한 재료 모델을 적용하였다. 해석 결과, 기존 강재 방호울타리는 최대 약 167.6 mm의 변위가 발생하였으며, 방호구조물 및 기둥부의 소성 파괴가 관촬되었다. 추가적으로 콘크리트 연석의 고정부에서는 광범위한 파괴 양상이 확인되었으며, 이는 차량 충돌 시 구조체가 보행자 측으로 비산될 수 있는 위험성을 내포한다. 한편, CFRP 및 GFRP 방호울타리는 강재 대비 최대 변위가 약 7.1∼ 9.6%까지 증가하였으며, Hashin 파손 기준에 따른 파손 지수가 최대 1,548.428로 나타나 초기 단계에서 파손이 시작된 것으로 분석 되었다. 이러한 결과는 단순한 재료 치환만으로는 충분한 구조 안전성을 확보하기 어려움을 보여주며, FRP 복합재에 적합한 구조 설계 및 변수 최적화에 대한 추가 연구가 필요함을 시사한다. 아울러 수치해석 결과의 신뢰성 확보를 위해서는 향후 실험적 검증이 필수적이다.
원자력발전의 최대 걸림돌은 사용 후 핵연료인 고준위폐기물이다. 높은 방사능과 발생하는 열은 사용 후 핵연료의 안전한 처분을 어렵게 하고 있다. 현재 유일한 처리방법은 심지층 처분기술이다. 본 논문은 이와 같은 심지층 처분기술의 핵심기술 중의 하나인 처분용기의 구조안전성 설계문제를 다루고 있다. 특히 처분장에서 처분용기 처분 시 사고로 운송차량에서 추락 낙하 하여 지면과 충돌하는 경우 처분용기에 가해지는 충격력에 의하여 처분용기에 발생하는 응력 및 변형에 대한 비선형구 조해석을 수행하였다. 해석의 주된 내용은 심지층 처분장에서 운반차량으로 처분용기 운반 중 사고로 추락낙하 하여 지면과의 충돌 시에 처분용기에 가해지는 충격력을 기구동역학해석 상용 컴퓨터코드인 RecurDyn으로 구하고 이 충격력에 의하여 처 분용기에 발생하는 응력 및 변형을 유한요소 정적 구조해석 상용 컴퓨터코드인 NISA를 이용하여 구한 것이다. 해석결과는 충돌 충격 시간 중 발생하여 처분용기에 가해지는 충격력에 의하여 처분용기, 특히 처분용기의 위 덮개 혹은 아래 덮개에 큰 응력과 대변형이 발생함을 보여주고 있다.
There are differences in seismic behavior between non-skewed bridges and skewed bridges due to in-plane rotations caused by pounding between the skewed deck and its abutments during strong earthquake. Many advances have been made in developing design codes and guidelines for dynamic analyses of non-skewed bridges. However, there remain significant uncertainties with regard to the structural response of skewed bridges caused by unusual seismic response characteristics. The purpose of this study is performing non-linear time history analysis of the bridges using abutment-soil interaction model considering pounding between the skewed deck and its abutments, and analyzing global seismic behavior characteristics of the skewed bridges to assess the possibility of unseating. Refined bridge model with abutment back fill, shear key and elastomeric bearing was developed using non-linear spring element. In order to evaluate the amplification of longitudinal and transverse displacement response, non-linear time history analysis was performed for single span bridges. Far-fault and near-fault ground motions were used as input ground motions. According to each parameter, seismic behavior of skewed bridges was evaluated.
본 논문은 8절점 고체요소를 이용하여 항공기 충돌에 의한 원전 격납건물의 동적 거동을 분석하고 그 결과를 기술하였다. 콘크리트의 재료적 특성을 표현하기 위하여 Drucker-Prager항복기준을 바탕으로 항복면과 파괴면을 형성하였다. 이때 항복면과 파괴면은 콘크리트의 소성변형이 누적되면 가변하는 것으로 가정하였다. 철근의 재료특성은 변형도에 의존적인 탄성/점소성모델을 이용하여 표현하였다. 표준고체요소의 성능저하를 방지하기 위하여 Hughes가 제시한 B bar법을 바탕으로 변형도-변위관계 행렬을 형성하였다. 동적 시간이력해석을 수행하기 위하여 안정적인 수렴성을 가지는 암시적인 Newmark법을 도입하였다. 마지막으로 시간이력해석을 통하여 콘크리트 균열변형도의 수준과 충돌하는 항공기의 종류에 따른 격납건물의 동적거동변화를 조사하고 이를 정량적으로 기술하였다.
Vehicle collision is one of cause for structural failure. The increased load carrying capacity of the truck is also a threat for existing structures. Recent studies show the actual shear capacity of the column of bridge is larger than industrial standards. In this study, truck-column collision model was developed and load carrying capacity of a column were evaluated.
This work was intended to test the collision of a 14-ton truck with a concrete protection wall and
thus analyze fracture behavior of a protection wall. And, this work investigated fracture phenomena by modeling concrete protection walls in different levels of stress with the use of LS-DYNA. In addition, it analyzed fracture behavior of a protection wall by modelling concrete protection walls in the different installation heights of wire-mesh.