검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        1991.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 전달영향계수법의 개념을 사각형 평판의 자유진동해석에 적용하여, 그 계산결과들을 전달매트릭스법 및 엄밀해 또는 Leissa 방법의 결과와 비교하여 그 유용성을 확인하였다. 전달영향계수법은 전달매트릭스법으로는 구하기 곤란한 고차의 고유진동수에 대해서도 정도좋게 구할 수 있으며, 계산속도의 면에서도 전달매트릭스법보다 우수함을 알 수 있었다. 또한, 전달영향계수법은 모든 경계조건 및 중간 경탄성 지지조건도 전단 및 회전 스프링정수 값의 조절만으로 간편하게 대응시킬수 있었다
        4,000원
        2.
        1990.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Two perforated plates(a square plate and a rectangular plate having an as야ct ratlO 1.57(L,=11, L,= 7)) are taken as analysis examples. Each of these plates is given some changes in the boundary ∞nditions. The size of cutouts as well as their locations are also changed in order to examine the variation of two eigenvalues corresponding to the fundamental mode. The relationship between two eigenvalues is estab!ished by changing the magnitude of edge thrust
        4,300원
        3.
        2018.09 KCI 등재 서비스 종료(열람 제한)
        이 연구는 이방성 평판의 휨 해석을 위한 지배방정식을 유도하고 다양한 경계조건을 갖는 평판의 정확한 풀이과정을 제시하였다. 이 해법은 삼각급수를 이용하여 미분 방정식을 대수학적 방정식으로 변환시키는 전통적인 Navier와 Levy의 방법을 따랐다. Levy의 방법을 이용해 해를 구하려면 평판의 마주보는 두 끝단이 단순지지단인 경우에만 가능하다. Navier의 방법은 사각평판의 네 끝단이 모두 단순지지단 이어야 한다. 본 연구는 Navier와 Levy해법이 갖는 경계조건 한계를 극복하였다. 이 해법은 평판 네 끝단의 경계조건이 단순지지단과 고정단의 어떤 조합이라도 적용될 수 있다. 하중조건도 분포하중, 부분하중 그리고 선하중에 대해 적용할 수 있다. 이 해법의 장점은 Navier와 Levy해법이 갖는 경계조건 한계를 극복하였을 뿐만 아니라 정확한 해를 구할 수 있다. 비대칭 경계조건을 갖는 이방성평판에 대하여 이해법을 이용한 계산결과를 나타냈다. 또한 Navier해법과 Levy해법 그리고 Szilard의 계산결과와 비교를 보여주었는데 계산된 처짐량이 잘 일치한다.