The estimation method of economical leakage management target utilized upon planning business for improvement of revenue water ratio in South Korea is presented and applicability of methods developed in this study is assessed through application on site. With a consideration of revenue water ratio in application target area, estimation method of long-term economical leakage management target is applied. Three leakage reduction methods such as replacement of residual aged pipe, leakage investigation and restoration and water pressure management are applied with a consideration of characteristics of site. Due to difficulty of obtaining data, analysis of cost/benefit by leakage reduction methods is performed by applying method of leakages estimation equation among statistical methods. As a result of application, revenue water ratio corresponding to long-term economical leakage management target is 91.6 %.
Optimal design of the water supply pipe network aims to minimize construction cost while satisfying the required hydraulic constraints such as the minimum and maximum pressures, and velocity. Since considering one single design factor (i.e., cost) is very vulnerable for including future conditions and cannot satisfy operator’s needs, various design factors should be considered. Hence, this study presents three kinds of design factors (i.e., minimizing construction cost, maximizing reliability, and surplus head) to perform multi-objective optimization design. Harmony Search (HS) Algorithm is used as an optimization technique. As well-known benchmark networks, Hanoi network and Gyeonggi-do P city real world network are used to verify the applicability of the proposed model. In addition, the proposed multi-objective model is also applied to a real water distribution networks and the optimization results were statistically analyzed. The results of the optimal design for the benchmark and real networks indicated much better performance compared to those of existing designs and the other approach (i.e., Genetic Algorithm) in terms of cost and reliability, cost, and surplus head. As a result, this study is expected to contribute for the efficient design of water distribution networks.