This thesis studies two imputation methods, the MCMC method and the EM algorithm, that take care of the problem. The performance of the two methods for the linear (or quadratic) discriminant analysis are evaluated under various types of incomplete observations. Based on simulated experiments, the effect of the imputation using the EM algorithm and the MCMC method are evaluated and compared in terms of the probability of misclassification and the RMSE. This is done for the various cases of incomplete observations. The cases are differentiated by missing rates, sample sizes, and distances between two classification groups. The studies show that the probability of misclassification and the RMSE of the EM algorithm method is lower than the MCMC method. Therefore the imputation using the EM algorithm is more efficient than the MCMC method. And the probability of misclassification of the method that all vectors of observations with missing values are omitted from analysis is lower than the EM algorithm and the MCMC method when the samples size is small and the rate of missing values is extremely big.
적어도 2,500년 전에 기원된 바둑은 세상에서 가장 오래된 보드 게임 중의 하나이다. 아직까지 포석 바둑에 대한 이론적 연구는 여전히 미흡하다. 본 연구는 특정 프로기사의 포석을 갖고 훈련용 포석으로부터 얻어낸 클래스로의 인식을 위해 전통적인 선형판별분석 알고리즘을 적용하였다. 상위 10위권 한국 프로기사의 포석을 갖고 클래스-독립 선형판별분석과 클래스-종속 선형판별분석을 수행하였다. 실험 결과 클래스-독립 LDA는 평균 14%의 인식률을, 클래스-종속 LDA는 평균 12%의 인식률을 각각 보였다. 또한 연구 결과 일반적인 상식과 달리 PCA가 LDA보다 더 우월하고, 유클리디언 거리 측정 방식이 결코 LDA보다 뒤지지 않는다는 새로운 사실이 밝혀졌다.