검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2007.12 KCI 등재 서비스 종료(열람 제한)
        게임 환경에서의 학습은 다양한 분야에서 유용하게 활용될 수 있다. 그러나, 학습이 게임에서 만족스러운 결과를 산출하기까지는 많은 학습 시간이 요구된다. 이러한 점을 개선하기 위하여 학습시간을 단축시킬 수 있는 방법론들이 필요하다. 본 논문에서는 예측 정보를 이용한 Q-학습의 성능개선 방안을 제안한다. Q-학습 알고리즘에서는 Q-테이블의 각 상태별 선택된 액션을 참조한다. 참조한 값은 예측 모듈의 P-테이블에 저장되고, 이 테이블에서 출연 빈도가 가장 높은 값을 찾아 2차 보상 값을 갱신할 때 활용한다. 본 연구에서 제시한 방법은 상태내의 전이가 가능한 액션의 수가 많을수록 성능이 높아짐을 확인하였다. 또한 실험결과로 실험 중반 이후부터 제안한 방식이 기존 방식보다 평균 9%의 성능 향상을 보였다.