작물 생육에 영향 요소인 기상 변수들을 이용하여 우리나라 쌀 생산량(kg 10a−1 )을 추정하였다. 이 연구는 기상 변수의 연 변동성을 기반으로 간단하지만 효과적인 통계 방법인 다중회귀모형을 이용하여 쌀 생산량에 대한 예측 가능성을 살펴보았다. 비균질적인 환경 조건의 특성을 고려하여, 연 쌀 생산량을 우리나라 도별로 추정하고 검증하였다. 기상청에서 제공하는 1986년부터 2018년까지 33년간 관측된 61개지점의 월 평균 기상 자료를 설명자료로 사용하였다. 11겹 교차검증(11-fold cross-validation)을 이용하여 추정된 쌀 생산량의 정확도를 추정하였다. 분석한 결과, 상관계수 (0.7) 측면에서 간단한 과정으로도 도별 쌀 생산량의 시간적 변화를 잘 모의하였다. 또한 추정된 쌀 생산량은 0.7 kg 10a−1 (0.15%)의 평균 오차를 가지며, 관측의 공간적 특성을 잘 모의하였다. 이 방법은 적시에 농업기상 예측 정보를 얻는다면 쌀 생산량에 대한 유용한 정보를 사전에 얻을 수 있을 것으로 생각된다.
The purpose of this study is to identify the effectiveness of satellite images in detecting the areas of rice production in the Barisal of Bangladesh. We also investigated the effect of climate change on the crop production through comparative analysis of rice production area and production statistics with climate data at multi-temporal time scale. This analysis found that the classification of rice fields extracted through satellite image and made as the number of rice cultivation areas did not exceed 10 percent of the statistical data. Climate data analysis showed that the average temperature during the ripening stage has the greatest impact on Boro’s production. It would be more make sense if you can describe the results of how precipitation is also important for rice production in addition to temperature. Therefore, it is believed that this research could serve as a key basis for solving food security issues due to climate change.