This study investigates the effects of various Throttle Position Sensor (TPS) signal anomalies and throttle body defects on automotive acceleration and safety by experimentally reproducing and analyzing eight distinct fault scenarios. The results demonstrate that the Electronic Control Unit (ECU) consistently detects signal anomalies and activates fail-safe modes, limiting throttle response and engine output to maintain automotive control. In all fault conditions, sudden unintended acceleration was effectively prevented, and braking performance remained unaffected. These findings underscore the robustness of the throttle control system against electrical and mechanical defects and offer valuable insights for the design of safer drive-by-wire systems.
This study investigates the impact of both direct and indirect moisture ingress into an automotive engine control unit(ECU) on vehicle behavior and operational safety. Two experimental conditions were examined: exposure to an environment with 100% relative humidity(indirect ingress) and direct injection of 1.0~2.0 cc of water onto the ECU(direct ingress). The results showed no abnormal behavior under indirect moisture conditions. However, direct moisture ingress caused engine malfunctions, warning light activations, and irregular vehicle behavior. Notably, the vehicle's safety logic functioned as intended, resulting in engine shutdown without leading to unintended acceleration. These findings provide quantitative data valuable for future reliability assessments of ECUs and investigations into sudden unintended acceleration phenomena.
Recently, there has been growing anxiety about automotive due to accidents suspected to be caused by sudden unintended acceleration. A study was conducted on the effect of automotive defects on Sudden Unintended Acceleration. Experimental results were derived and analyzed by simulating the situation of sudden unintended acceleration while driving a automotive. It was experimentally confirmed that the defect in the TPS sensor had no direct effect on the rapid increase in RPM. It has been confirmed that the vehicle brakes normally when the brakes are applied even if there is a TPS sensor defect. In the future, it is necessary to investigate the correlation between automotive defects and sudden unintended acceleration through various experiments.
Recently, the number of elderly driver accidents has been steadily increasing. EDR(Event Data Recorder) helps a lot in understanding traffic accidents. In particular, as anxiety about SUA(Sudden Unintended Acceleration) increases, EDR data is playing an important role in accident analysis. In this study, EDR data of an accident vehicle suspected of SUA was analyzed to identify traffic accident circumstances and detailed accidents. Experimental results were derived and analyzed by simulating the situation of SUA while driving a car. As a result, it was found that normal braking is performed when the brake pedal is operated even in dangerous situations such as mechanical defects and driver malfunctions. Rather than finding the cause of an accident after a traffic accident, countermeasures are needed to prevent mechanical defects and driving malfunctions before a traffic accident.