Most of the open-source decision tree algorithms are based on three splitting criteria (Entropy, Gini Index, and Gain Ratio). Therefore, the advantages and disadvantages of these three popular algorithms need to be studied more thoroughly. Comparisons of the three algorithms were mainly performed with respect to the predictive performance. In this work, we conducted a comparative experiment on the splitting criteria of three decision trees, focusing on their interpretability. Depth, homogeneity, coverage, lift, and stability were used as indicators for measuring interpretability. To measure the stability of decision trees, we present a measure of the stability of the root node and the stability of the dominating rules based on a measure of the similarity of trees. Based on 10 data collected from UCI and Kaggle, we compare the interpretability of DT (Decision Tree) algorithms based on three splitting criteria. The results show that the GR (Gain Ratio) branch-based DT algorithm performs well in terms of lift and homogeneity, while the GINI (Gini Index) and ENT (Entropy) branch-based DT algorithms performs well in terms of coverage. With respect to stability, considering both the similarity of the dominating rule or the similarity of the root node, the DT algorithm according to the ENT splitting criterion shows the best results.
This research paper introduces the application and implementation of medical decision metrics that classifies medical decision-making into four different metrics using statistical diagnostic tools, such as confusion matrix, normal distribution, Bayesian prediction and Receiver Operating Curve(ROC). In this study, the metrics are developed based on cross-section study, cohort study and case-control study done by systematic literature review and reformulated the structure of type I error, type II error, confidence level and power of detection. The study proposed implementation strategies for 10 quality improvement activities via 14 medical decision metrics which consider specificity and sensitivity in terms of α and β. Examples of ROC implication are depicted in this paper with a useful guidelines to implement a continuous quality improvement, not only in a variable acceptance sampling in Quality Control(QC) but also in a supplier grading score chart in Supplier Chain Management(SCM) quality. This research paper is the first to apply and implement medical decision-making tools as quality improvement activities. These proposed models will help quality practitioners to enhance the process and product quality level.