본 연구에서는 2 016년부터 2 02 0년까지 내륙 관측소 중 안개 최다발 지역인 안동을 대상으로 XGBoost-DART 머신러닝 알고리즘을 이용하여 1 시간 후 안개 유무를 예측하였다. 기상자료, 농업관측자료, 추가 파생자료와 각 자료 를 오버 샘플링한 확장자료, 총 6개의 데이터 세트를 사용하였다. 목측으로 획득한 기상현상번호와 시정계 관측으로 측 정된 시정거리 자료를 각각 안개 유[1]무[0]로 이진 범주화하였다. 총 12개의 머신러닝 모델링 실험을 설계하였고, 안개 가 사회와 지역사회에 미치는 유해성을 고려하여 모델의 성능은 재현율과 AUC-ROC를 중심으로 평가하였다. 전체적으 로, 오버샘플링한 기상자료와 기상현상번호 기반의 예측 목표를 조합한 실험이 최고 성능을 보였다. 이 연구 결과는 머 신러닝 알고리즘을 활용한 안개 예측에 있어서, 목측으로 획득한 기상현상번호의 중요성을 암시한다.