검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2017.10 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 우리나라 전역에 대하여 인공신경망 기법을 사용하여 일최심신적설을 추정하였다. 인공신경망 모형 구조를 시행 착오법을 이용 하여 설계한 결과, 입력자료는 일 최저 기온, 일 평균 기온, 강수량으로 정하였고, 은닉층과 노드의 수는 각각 1층, 10개로 정하였다. 관측값을 인공 신경망의 입력자료로 활용하는 경우, 교차검증 상관계수는 0.87로 Ordinary Kriging기법을 활용하여 일최신심적설을 공간보간한 경우의 교차검 증상관계수인 0.40보다 크게 높았다. 미계측 지역의 일최심신적설을 추정하는 경우의 인공신경망 모형의 성능을 알아보기 위하여 인공신경망 모 형의 입력자료들을 Ordinary Kriging으로 공간보간하여 일최심신적설을 추정하였다. 이 경우 교차검증 상관계수는 0.49였다. 또한 해발 고도 200 m 이상의 산지에서의 인공신경망의 성능은 나머지 지역인 평지에서의 성능보다 다소 떨어짐을 확인하였다. 본 연구의 이러한 결과는 우리나라 전역에 걸친 정확한 적설량의 즉각적인 산정에 인공신경망 모형이 효과적으로 활용될 수 있음을 의미한다.