Since climate change increases the risk of extreme rainfall events, concerns on flood management have also increased. In order to rapidly recover from flood damages and prevent secondary damages, fast collection and treatment of flood debris are necessary. Therefore, a quick and precise estimation of flood debris generation is a crucial procedure in disaster management. Despite the importance of debris estimation, methodologies have not been well established. Given the intrinsic heterogeneity of flood debris from local conditions, a regional-scale model can increase the accuracy of the estimation. The objectives of this study are 1) to identify significant damage variables to predict the flood debris generation, 2) to ascertain the difference in the coefficients, and 3) to evaluate the accuracy of the debris estimation model. The scope of this work is flood events in Ulsan city region during 2008-2016. According to the correlation test and multicollinearity test, the number of damaged buildings, area of damaged cropland, and length of damaged roads were derived as significant parameters. Key parameters seems to be strongly dependent on regional conditions and not only selected parameters but also coefficients in this study were different from those in previous studies. The debris estimation in this study has better accuracy than previous models in nationwide scale. It can be said that the development of a regional-scale flood debris estimation model will enhance the accuracy of the prediction.