검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 비국부 적분 연산기로 표현되는 페리다이나믹 방정식의 수렴성을 검토한다. 정적/준정적 손상 해석 문제를 효율적으로 해석하기 위해 페리다이나믹 방정식의 implicit 정식화가 필요하다. 이 과정에서 페리다이나믹 비국부 적분 방정식으로부터 대수방정식 형태가 나타나게 되어 시스템 행렬 계산을 위해 많은 시간이 소요되기 때문에, 효율적인 계산을 위해 수렴성이 중요한 요소가 된다. 특히 radial influence 함수를 적분 kernel로 사용하는 경우 fractional Laplacian 적분 방정식이 유도된다. 비국부 적분 연산기의 교윳값 성질에 의해 대수방정식의 condition number가 radial influence 함수의 차수 및 비국부 영역의 크기에 영향을 받는 것이 수학적으로 확인되었다. 본 연구에서는 이를 토대로 균열이 있는 페리다이나믹 정적 해석 문제를 Newton-Raphson 방법으로 해석할 때 적분 커널의 차수, 비국부 영역의 크기 등이 대수방정식의 condition number와 preconditioned conjugate gradient (PCG) 방법으로 계산 시 수렴성 및 계산 시간에 미치는 영향을 수치적으로 분석한다.
        4,000원