본 연구에서는 강재가 맞대기 이음으로 연결될 경우 CFRP(Carbon Fiber Reinforced Plastic) 쉬트(sheet)를 맞대기 이 음부에 접착할 경우 강재 및 CFRP 쉬트에 발생하는 응력을 해석하였다. CFRP 쉬트로 보강한 경우 접착제의 두께, 강재와의 접착 길이, CFRP 강도 변화를 매개변수로 사용하여 이 매개변수에 변화에 따른 이음부의 응력분포를 분 석하였다. 또한 CFRP를 여러 층으로 접착할 경우 각 층의 강도를 다르게 변화시켜 맞대기 이음부에 유리한 응력분 포를 나타내는 CFRP의 강도를 제시하였다. 본 연구를 위해 빠른 수렴성을 가지며 왜곡된 요소형상에서도 정확한 응력결과를 보이는 강화변형률장(Enhanced Assumed Strain Field)을 사용한 평면변형률 유한요소에 대한 프로그램을 작성하였다.
This paper presents the stress distribution of the damaged butt joint of steel plate using CFRP laminates when the flange in tension zone of steel box girder is welded by butt welding. When CFRP sheets are patched on tension flange of steel-box girder, the stress distribution of a vertical and normal direction on damaged welding part is shown as parameters such as a variation of the thickness of adhesive, the overlap length with steel, and the modulus of elasticity of CFRP sheets. For the study, we wrote the computer program using the EAS(Enhanced assumed strain) finite element method for plane strain that has a very fast convergency and exact stress for distorted shape.
The crack initiation equals to fracture for bonded joint with brittle adhesive. The criterion is formulated in terms of the quasi-stress intensity factor Kp, for the maximum principle stress, that is analogous to the stress intensity factor used to characterize the stress field in the vicinity of bond terminus. Kp is evaluated using a boundary element analysis. The crack initiation at the terminus of adhesive bonded joints is estimated with the critical quasi-stress intensity factor Kp. This method presented here hardly pays attention to the crack propagation. Since there is a large influence of crack propagation on the strength of adhesive joints and structures, crack propagation must be taken into account on strength prediction of bonded joints. The quasi-stress intensity factor Kp for the maximum principle stress can use as the criteria of the crack initiation at the terminus of adhesive bonded joints having various shapes.
The objectives of the present study are to show how to predict the crack initiation at the terminus of adhesive bonded joints to calculate the crack growth in the adhesive layer using the total strain energy release rate. The crack propagation for ductile adhesives is theoretically estimated using -curve. -curve is determined from static shearing tests of single lap joints. The total strain energy release rate for single lap joints is evaluated using a boundary element analysis. The strength prediction is conducted by means of the R-curve and the total strain energy release rate.The conclusions are summarized as follows; (1) A crack propagation geometry of the bonded structure using ductile adhesive was predicted from the distribution of the total strain energy release rate. (2) The final failure load for lap joints is predicted by the R-curve method based on the fracture mechanics. (3) The final failure load for stiffened plates with a steel L-beam is predicted by the R-curve method based on the fracture mechanics.