Recently, there has been an increasing attempt to replace defect detection inspections in the manufacturing industry using deep learning techniques. However, obtaining substantial high-quality labeled data to enhance the performance of deep learning models entails economic and temporal constraints. As a solution for this problem, semi-supervised learning, using a limited amount of labeled data, has been gaining traction. This study assesses the effectiveness of semi-supervised learning in the defect detection process of manufacturing using the MixMatch algorithm. The MixMatch algorithm incorporates three dominant paradigms in the semi-supervised field: Consistency regularization, Entropy minimization, and Generic regularization. The performance of semi-supervised learning based on the MixMatch algorithm was compared with that of supervised learning using defect image data from the metal casting process. For the experiments, the ratio of labeled data was adjusted to 5%, 10%, 25%, and 50% of the total data. At a labeled data ratio of 5%, semi-supervised learning achieved a classification accuracy of 90.19%, outperforming supervised learning by approximately 22%p. At a 10% ratio, it surpassed supervised learning by around 8%p, achieving a 92.89% accuracy. These results demonstrate that semi-supervised learning can achieve significant outcomes even with a very limited amount of labeled data, suggesting its invaluable application in real-world research and industrial settings where labeled data is limited.
Recently, many studies have been conducted to improve quality by applying machine learning models to semiconductor manufacturing process data. However, in the semiconductor manufacturing process, the ratio of good products is much higher than that of defective products, so the problem of data imbalance is serious in terms of machine learning. In addition, since the number of features of data used in machine learning is very large, it is very important to perform machine learning by extracting only important features from among them to increase accuracy and utilization. This study proposes an anomaly detection methodology that can learn excellently despite data imbalance and high-dimensional characteristics of semiconductor process data. The anomaly detection methodology applies the LIME algorithm after applying the SMOTE method and the RFECV method. The proposed methodology analyzes the classification result of the anomaly classification model, detects the cause of the anomaly, and derives a semiconductor process requiring action. The proposed methodology confirmed applicability and feasibility through application of cases.
감성어휘는 텍스트로 감성을 표현하거나, 반대로 텍스트로부터 감성을 인식하기 위한 특징으로써 감성분류 연 구에 필수요소이다. 본 연구는 감성어휘의 집합인 감성사전을 자동으로 구축하는 그래프 기반 준지도 학습 방법 을 제안한다. 특히 감성어휘가 사용되어지는 분야에 따라 그 감성이 변하는 중의성 문제를 고려하여 분야 별 감 성사전을 구축하고자 한다. 제안하는 방법은 어휘와 어휘들 간의 밀접도를 토대로 그래프를 구성하고, 사전에 학 습 된 일부 소량의 감성어휘들의 감성을 구성된 그래프 전체에 전파하는 방식으로 모든 어휘의 감성을 추론한다. 감성어휘는 대표적으로 감성단어와 감성구문이 있으며, 본 연구에서는 이들 각각에 대한 그래프를 구성하고 감성을 추론하여 전체 감성사전을 구축하였다. 제안하는 방법의 성능을 검증하기 위해 영화평 분야의 감성사전을 구축하고, 이를 이용한 영화평 감성분류 실험을 수행하였다. 그 결과 기존 범용 감성사전의 어휘들을 이용한 감 성분류보다 더 높은 분류 성능을 확인하였다.