지수 함수 및 멱 법칙 함수를 이용한 점진기능재료(FGM) 판의 전단 및 두께 방향 변형을 고려한 이론을 정식화하여 동적 평형방정식을 유도하였다. 지수 함수 및 멱 법칙 함수는 두께 방향으로 재료의 변화를 고려할 수 있고 3차원 해석방법은 전단 및 두께 방향 변형을 고려함으로써 점진기능재료의 정확한 구조적 특성을 고려할 수 있다. Pasternak탄성지반 위에 놓인 4변이 단순 지지되고 전단 및 두께 방향 변형이 고려된 점진기능재료 판의 지배방정식을 풀기 위해 Navier 방법을 사용하였다. 거듭제곱 지수와 3차원 해석의 효과를 나타내기 위한 지수 및 멱 법칙 점진기능재료 판의 동적 해석결과를 제시하였다. 기존의 2차원 고차전단변형 이론 및 3차원 이론과의 관계를 수치해석 결과를 통하여 고찰하였다. 또한 (i) 거듭제곱 지수, (ii) 폭-두께 비, 그리고 (iii) 탄성지반 계수, 등이 점진기능재료 판의 자유진동수에 미치는 효과에 대하여 관찰하였다. 본 연구의 결과를 검증하기 위해 참고문헌의 결과들과 비교 분석하였다.