In this study, the multi-lane detection problem is expressed as a CNN-based regression problem, and the lane boundary coordinates are selected as outputs. In addition, we described lanes as fifth-order polynomials and distinguished the ego lane and the side lanes so that we could make the prediction lanes accurately. By eliminating the network branch arrangement and the lane boundary coordinate vector outside the image proposed by Chougule’s method, it was possible to eradicate meaningless data learning in CNN and increase the fast training and performance speed. And we confirmed that the average prediction error was small in the performance evaluation even though the proposed method compared with Chougule’s method under harsher conditions. In addition, even in a specific image with many errors, the predicted lanes did not deviate significantly, meaningful results were derived, and we confirmed robust performance.
고속 주행하는 차량의 움직임은 영상에서 흔들림으로 나타난다. 이러한 흔들림은 번호판 인식의
경우에 오인식률을 높이는 원인이 된다. 이때 흔들림에 대한 사전 정보 없이 흔들림을 복원하는 방법을
블라인드 디컨벌루션이라고 한다. 본 논문에서는 블라인드 디컨벌루션 방법으로 고속 주행으로 인한 흔들림을 복원하여 차량의 번호판을 인식하는 방법을 제안한다. 이를 위해 흔들림이 없는 영상의 통계를 이용하여 흔들림 복원을 수행한다. 다음으로 템플릿 정합을 이용하여 번호판 인식 과정을 수행한다. 실험을 통해 흔들림 보정 전에 인식하지 못하던 데이터에 대하여 흔들림 복원 후 인식률의 향상을 확인하였다.
This paper presents a 6-DOF relocalization using a 3D laser scanner and a monocular camera. A relocalization problem in robotics is to estimate pose of sensor when a robot revisits the area. A deep convolutional neural network (CNN) is designed to regress 6-DOF sensor pose and trained using both RGB image and 3D point cloud information in end-to-end manner. We generate the new input that consists of RGB and range information. After training step, the relocalization system results in the pose of the sensor corresponding to each input when a new input is received. However, most of cases, mobile robot navigation system has successive sensor measurements. In order to improve the localization performance, the output of CNN is used for measurements of the particle filter that smooth the trajectory. We evaluate our relocalization method on real world datasets using a mobile robot platform.
As drones gain more popularity these days, drone detection becomes more important part of the drone systems for safety, privacy, crime prevention and etc. However, existing drone detection systems are expensive and heavy so that they are only suitable for industrial or military purpose. This paper proposes a novel approach for training Convolutional Neural Networks to detect drones from images that can be used in embedded systems. Unlike previous works that consider the class probability of the image areas where the class object exists, the proposed approach takes account of all areas in the image for robust classification and object detection. Moreover, a novel loss function is proposed for the CNN to learn more effectively from limited amount of training data. The experimental results with various drone images show that the proposed approach performs efficiently in real drone detection scenarios.
Groundwater level hydrographs from observation wells in Jeju island clearly illustrate distinctive features of recharge showing the time-delaying and dispersive process, mainly affected by the thickness and hydrogeologic properties of the unsaturated zone. Most groundwater flow models have limitations on delineating temporal variation of recharge, although it is a major component of the groundwater flow system. Recently, a convolution model was suggested as a mathematical technique to generate time series of recharge that incorporated the time-delaying and dispersive process. A groundwater flow model was developed to simulate transient groundwater level fluctuations in Pyoseon area of Jeju island. The model used the convolution technique to simulate temporal variations of groundwater levels. By making a series of trial-and-error adjustments, transient model calibration was conducted for various input parameters of both the groundwater flow model and the convolution model. The calibrated model could simulate water level fluctuations closely coinciding with measurements from 8 observation wells in the model area. Consequently, it is expected that, in transient groundwater flow models, the convolution technique can be effectively used to generate a time series of recharge.
Temporal variation of groundwater levels in Jeju Island reveals time-delaying and dispersive process of recharge, mainly caused by the hydrogeological feature that thickness of the unsaturated zone is highly variable. Most groundwater flow models have limitations on delineating temporal variation of recharge, although it is a major component of the groundwater flow system. A new mathematical model was developed to generate time series of recharge from precipitation data. The model uses a convolution technique to simulate the time-delaying and dispersive process of recharge. The vertical velocity and the dispersivity are two parameters determining the time series of recharge for a given thickness of the unsaturated zone. The model determines two parameters by correlating the generated recharge time series with measured groundwater levels. The model was applied to observation wells of Jeju Island, and revealed distinctive variations of recharge depending on location of wells. The suggested model demonstrated capability of the convolution method in dealing with recharge undergoing the time-delaying and dispersive process. Therefore, it can be used in many groundwater flow models for generating a time series of recharge.