검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        기후 변화에 의해 해수면 온도 상승, 태풍의 최고 강도 북상, 태풍 강도 증가가 나타나고 있으며, 미래의 태풍 강도 변화가 더 심화될 것으로 예상하고 있다. 본 논문에서는 기후 변화 시나리오에 의해서 발생할 수 있는 한반도 부근의 태풍 강도를 예측하기 위하여 딥러닝 기반 태풍 강도 예측 모델을 개발하였다. 기후 예측정보를 이용하여 미래 기후 변화 환경장 변화에 따른 태풍의 강도를 예측할 수 있도록 과거 환경장을 학습 자료로 사용하였다. 학습자료는 1980년에서 2022년까지의 태풍 발생 빈도가 높은 6~10월의 기상 및 해양 재분 석 월평균 자료와 Best Track 태풍 241개를 입력자료로 사용하였다. 환경장 변화에 따른 태풍 강도 예측을 위해 자료의 공간적인 특징과 시간적인 특징을 함께 고려하는 딥러닝 모델인 ConvLSTM 기반으로 모델을 개발하였다. 태풍 트랙 시퀀스의 각 이동 경로에 대한 월평균 환경장 자료를 모델에 학습하여 태풍의 중심 기압을 예측하였다. 태풍의 공간적 특성을 반영할 수 있도록 범위를 설정하여 입력자료로 학습하였으며, 5°⨉ 5°의 범위일 때 가장 좋은 결과를 보였다. 몬테카를로 방법을 이용한 민감도 실험을 통해 모델 예측에 가장 큰 영향을 미치는 변수는 SST로 확인되었다.
        4,200원
        2.
        2009.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        북서태평양에서 발생한 태풍에 대해 발생 후 5일 동안 12시간 간격으로 태풍의 강도 및 진로를 예측할 수 있는 인공신경망 모델을 개발하였다. 사용되어진 예측인지는 CLIPER(발생 위치 강도 일자), 운동학적 파라미터(연직바람시어, 상층발산, 하층상대와도), 열적 파라미터(상층 상당온위, ENSO, 상층온도, 중층 상대습도)로 구성되어졌다. 예측인자의 특성에 따라 일곱개의 인공신경망 모델들이 개발되었으며, CLIPER와 열적 파라미터가 조합된(CLIPER-THERM) 모델이 가장 좋은 예측성능을 보였다. 이 CLIPER-THERM 모델은 강도 및 진로 모두에서 동절기보다 하절기에 더 나은 예측성능을 나타내었다. 또한 태풍의 발생이 아열대 서태평양의 남동쪽에 위치할수록 강도예측에서는 큰 오차를 보였고, 진로예측에서는 아열대 서태평양의 북서쪽에서 발생할수록 큰 오차를 보였다. 이후 인공신경망 모델의 예측성능을 검증하기 위해 같은 예측인자들을 이용하여 다중선형회귀모델을 개발하였으며, 결과로서 비선형 통계기법인 인공신경망 모델이 다중선형회귀모형보다는 더 나은 예측성능을 보였다.
        4,200원