본 논문에서는 스테레오 비전 센서를 이용한 프리팹 강구조물(PSS: Prefabricated Steel Structures)의 조립부 형상 품질 평가 기법을 소개한다. 스테레오 비전 센서를 통해 모형의 조립부 영상과 포인트 클라우드 데이터를 수집하였으며, 퍼지 기반 엣지 검출, 허프 변 환 기반 원형의 볼트 홀 검출 등의 영상처리 알고리즘을 적용하여 조립부 영역의 볼트홀을 검출하였다. 영상 내 추출된 볼트홀 외곽선 위 세 점의 위치 정보에 대응되는 3차원 실세계 위치 정보를 깊이 영상으로부터 획득하였으며, 이를 기반으로 각 볼트홀의 3차원 중심 위치를 계산하였다. 통계적 기법 중 하나인 주성분 분석 알고리즘(PCA: Principal component analysis) 알고리즘을 적용함으로써 3차 원 위치 정보를 대표하는 최적의 좌표축을 계산하였다. 이를 통해 센서의 설치 방향 및 위치에 따라 센서와 부재 간 평행이 아니더라도 안정적으로 볼트홀 간의 거리를 계측하도록 하였다. 각 볼트홀의 2차원 위치 정보를 기반으로 볼트홀의 순서를 정렬하였으며, 정렬된 볼트홀의 위치 정보를 바탕으로 인접한 볼트홀 간의 각 축의 거리 정보를 계산하여 조립부 볼트홀 위치 중심의 형상 품질을 분석하였 다. 측정된 볼트홀 간의 거리 정보는 실제 도면의 거리 정보와의 절대오차와 상대오차를 계산하여 성능 비교를 진행하였으며, 중앙값 기준 1mm 내의 절대오차와 4% 이내의 상대오차의 계측 성능을 확인하였다.
본 논문에서는 프리팹 구조물의 품질관리를 위한 딥러닝 및 비전센서 기반의 조립 성능 평가 모델을 개발하였다. 조립부 검출을 위 해 인코더-디코더 형식의 네트워크와 수용 영역 블록 합성곱 모듈을 적용한 딥러닝 모델을 사용하였다. 검출된 조립부 영역 내의 볼트 홀을 검출하고, 볼트홀의 위치 값을 산정하여 k-근접 이웃 기반 모델을 사용하여 조립 품질을 평가하였다. 제안된 기법의 성능을 검증 하기 위해 조립부 모형을 3D 프린팅을 이용하여 제작하여 조립부 검출 및 조립 성능 예측 모델의 성능을 검증하였다. 성능 검증 결과 높은 정밀도로 조립부를 검출하였으며, 검출된 조립부내의 볼트홀의 위치를 바탕으로 프리팹 구조물의 조립 성능을 5% 이하의 판별 오차로 평가할 수 있음을 확인하였다.