현대의 방탄 장갑은 우수한 관통 저항성을 갖추어야할 뿐만 아니라 군인과 군용차량의 기동성이 확보되어야 하기 때문에 경량화가 중요한 개발 요소가 되었다. 이종 적층 평판 구조의 방탄 장갑의 방탄 성능은 동일 중량 대비 구성 재료의 배열에 따라 달라진다. 본 논 문에서는 케블라, 초고분자량 폴리에틸렌 그리고 에바 폼으로 구성된 방탄 장갑의 적층 배열에 따른 방탄 성능을 분석한다. 구성 재료 의 두께가 5mm와 6.5mm인 두 가지 경우에서 6가지 적층 배열에 대하여 7.62 × 51mm NATO 탄환의 M80 탄을 856m/s의 속도로 충돌 시키는 피탄 해석을 수행하였다. 방탄 성능을 평가하기 위해 이종 적층 평판을 관통한 발사체의 잔류 속도와 잔류 에너지를 측정하였 다. 시뮬레이션 결과를 통해 케블라, 초고분자량 폴리에틸렌, 에바 폼의 배열 순서를 갖는 적층 구조가 동일 중량에 대해 가장 우수한 방탄 성능을 가짐을 확인하였다.
회전익 항공기 중 군에서 운용하는 기동헬기는 전장상황에서 운용되기 때문에 연료셀 피탄 상황에 직면할 가능성이 높다. 연료셀 피탄에 따른 내부압력 증가로 내부폭발이나 화재가 발생할 수 있으며, 이는 승무원의 생존 가능성에 치명적인 영향을 주게 된다. 따라서, 승무원의 생존성을 극대화하기 위해서는 연료셀이 직면 가능한 극한 상황을 예측하여 설계에 반영해야 한다. 항공기 연료셀 설계시 고려해야 하는 데이타는 피탄에 의한 연료셀 내부압력, 수압램 영향에 의한 연료셀 자체 및 금속피팅부 응력, 탄환의 운동에너지 등이 포함될 수 있다. 이러한 설계 데이터 확보를 위해서는 실물 시험을 수행하는 것이 가장 바람직하지만, 시간과 비용의 부담과 더불어 시험실패와 같은 시행착오 위험성으로 많은 제약이 따른다. 따라서, 사전에 다양한 설계 데이터 예측과 시행착오의 최소화를 위해서는 피탄 상황에 대한 수치해석이 필요하다. 본 연구에서는 입자법을 사용하여 연료셀 피탄 조건에 대한 유체-구조 연성 수치해석을 수행하였다. 수치해석은 전용 충돌해석 프로그램인 LS-DYNA를 사용하였고, 결과로 얻어진 탄의 거동과 에너지, 연료셀 내부압력과 등가응력의 평가를 통해 연료셀 설계와 관련한 데이터 확보 가능성을 타진하였다.
회전익항공기의 연료셀 내부는 연료보관 및 연료를 엔진으로 공급하기 위한 배관과 구성품들이 배치되어 있다. 특히, 기 동헬기는 전장에서 사용되는 헬기로써, 수 km 고도에서 비행하는 고정익기보다 비행고도가 낮기 때문에 피탄될 가능성이 높다. 따라서, 항공기의 생존성을 극대화하기 위해서는 피탄시 유체내부 상승압력에 의한 내부 구성품들이 받는 영향성을 검토하여 설계되어야 함은 주지의 사실이다. 그러나 내탄시험은 연료셀 자체의 제작비용 및 준비기간이 상당히 소요되고, 실탄 사용에 따른 시험수행의 제약 때문에 수치모사를 통한 관련 데이터의 확보가 필요하다. 이를 위해 본 연구에서는 유 체-구조 수치모사 프로그램인 Autodyn을 이용하여 회전익항공기 연료셀의 내탄 수치모사를 수행하여, 피탄 후 연료셀 내 부에서의 탄 거동을 분석하고 유체내부의 압력과 연료 셀 자체의 등가응력을 평가하였다.