본 연구에서는 우리나라의 주요하천인 한강, 금강, 영산강, 섬진강 그리고 낙동강의 하구에서 해수중 화학적산소요구량(COD)의 농도를 결정하는 주요 요인과 수질인자에 대해 고찰하였다. 주성분분석으로 얻어진 해수중 COD 농도를 결정하는 주요요인은 염분과 클로로필-a를 중심으로 한 외래성 기원과 자생공급으로 나타났으며, 그 외 해저 퇴적층의 유기물도 영향을 미치는 것으로 나타났다. 하구해역의 COD 농도를 결정하는 수질인자들의 기여도는 회귀식 기울기를 통해 평가하였다. 조사시기별로는 전체적으로 염분의 영향을 많이 받는 것으로 나타났으며, 4월과 8월에는 클로로필-a의 영향도 함께 받는 것으로 나타났다. 하구별로는 낙동강에서는 클로로필-a, 한강과 영산강에서는 염분, 금강에서는 염분과 함께 클로로필-a의 기여도가 각각 큰 것으로 나타났으며, 섬진강에서는 염분과 클로로필-a 모두 낮은 기여를 나타내었다.
In this study, monthly average values of BOD, COD, and TOC observed for 10 years (2008–2017) in the Nam River were estimated, and monthly variations of BOD, COD, and TOC were analyzed. Monthly average COD was always higher than monthly average BOD; monthly average TOC was high from June to September when rainfall was high. Monthly correlation coefficients between BOD and COD ranged from 0.57 to 0.94, those between BOD and TOC from 0.45 to 0.93, and those between COD and TOC from 0.75 to 0.93. The correlation coefficients were high from November to February when rainfall was low. Regression analyses for monthly average water quality data of the Nam River classified into dry season (October to April) and wet season (May to September) were conducted. Correlation coefficients were higher in the dry season than those in the wet season, and the determination coefficients of linear regression functions for BOD and COD with TOC were also higher in the dry season than those in the wet season. From this study, it can be concluded that it is appropriate to use monthly data to analyze the correlations among BOD, COD, and TOC in the stream. To analyze the relationship between TOC flowing into the stream and BOD/COD, it was found that seasonal characteristics should be considered.
Seasonal and stational variation of SS and COD were investigated from February 2008 to December 2010 and the relationship between them was discussed. During three years monitoring, SS decreased significantly (46% decline) possibly due to the increase of precipitation and thereby resulting salinity drop. COD on average was the highest in 2009. SS was the highest in autumn and the lowest in winter, and over 72% of SS was FSS. While SS is high in the upper sampling stations of the bay with shallow water, COD values do not show any relationship to the geomorphological characteristics. CODins, which was defined as COD after filtration, ranged 56%(winter) ~ 44.6%(summer) and showed no correlation with SS. It indicates that high SS concentration is not necessarily related to the high CODins. The seasonal CODins/SS data, which can be interpreted as COD density in SS, shows that SS in winter contains the dense COD materials compared to the other seasons.
A simple on-line measurement system consisting of a conventional peristaltic pump, a HPLC-type heater, and a flow-through spectrophotometer is introduced for the determination of chemical oxygen demand(COD). The system was configured such that the reaction mixture in the highly concentrated sulfuric acid medium flowing through the PTFE reaction tubing was heated at 150℃ and the absorbance of dichromate was continuously monitored at 445 nm. The same oxidation principle as in the standard procedure was employed except the use of CoSO_4 as a new effective catalyst. To test the system, potassium hydrogen phthalate was selected as a COD standard material. With suitably optimized reaction condition, the applicable concentration range depends on the initial concentration of potassium dichromate in the oxidizing reagent. With 2.0×10-3 M and 5.0×10-4 M dichromate, the linear dynamic range was observed up to 400 ppm and 100 ppm, respectively. The standards in the linear ranges were shown to be completely oxidized, which was confirmed with sodium oxalate or Mohr`s salt. In all cases, the typical reproducibility for between-runs was 2% or less. The proposed measurement system provides the valuable information for the further development of automated analysis system based on the present standard procedure.
The COD values and chloride ion concentrations of the Taewha river flowing through Ulsan area were determined along the main stream and the relationships between CODs and chloride ion concentrations were described. The results showed that the middle-upper stream and downstream of the Taewha river were polluted deeply with municipal sewage and self-purification occured in the middle-downstream of the river. When domestic sewage is a main source of pollutants, and is especially the only source of chloride in the stream water, the ratio of COD/[Cl^-] will be utilizable as a measure of self-purification of the stream.