The gaming industry is experiencing rapid growth due to recent advances in technology. Game engines such as Unity and Unreal are being actively utilized. These game engines offer a variety of plugins to naturally extend the functionality of the engine. Among them, innovations in 3D graphics technology have made game characters more expressive and enhanced the user experience. However, traditional 3D modeling approaches can sometimes bring limitations and challenges. In particular there are problems with the representation of fine details when utilizing general photos through AI scanning. This paper aims to overcome these difficulties by designing and implementing a game 3D character generation framework using Stable Diffusion. By improving the creation process by utilizing concept art images without hairstyles, it enables fast and efficient character creation. The application of this framework allows for faster and more consistent character creation with fewer steps in the creation process and helps game developers to adapt characters to the engine more easily and quickly. In addition, we verified the effectiveness and scalability of the 3D game character data generated by Stable Diffusion by checking the animation behavior in the game engine.
본 논문에서는 웹툰 캐릭터 영상에 대해서 심층학습에 기반한 3D 안면 재구성 기술을 제안한다. 본 연구에서 제안하는 방법은 기본 사항 모듈과 상세 사항 모듈로 구성된다. 입력 받은 웹툰 캐릭터 영상에 대해서 기본 사항 모듈의 요소인 Albedo 모듈을 적용해서 안면에 들어오는 빛의 양을 계산하여 Albedo 맵을 생성한다. 그 리고 기본 사항 모듈의 다른 구성 요소인 FLAME 모듈에서는 입력 영상에 대한 기본적인 3D 안면 형태를 생 성한다. 이와 동시에 상세사항 모듈을 적용해서 실제 사람과 다르게 이목구비가 변형된 웹툰 캐릭터 영상의 표정이나 얼굴 깊이와 같은 특징을 살리는 세부사항을 추출한다. 계산한 세부사항들을 토대로 세부사항 맵을 생성하여 앞서 FLAME 모듈에서 생성된 3D 안면 형태와 결합하여 세부사항 안면 형태를 생성한다. 그 후 Albedo 모듈에서 생성된 Albedo 맵까지 적용하면 최종적으로 웹툰 캐릭터 영상에 대한 3D 안면 재구성이 완 료된다. 본 연구에서는 웹툰 캐릭터뿐만 아니라 안면이 스타일화된 애니메이 션 캐릭터에 대해서도 결과를 생성하고, 이를 기존 연구와 비교하여 그 우수성을 입증한다.