검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        2.
        2012.06 구독 인증기관·개인회원 무료
        Epigenetic status of the genome of a donor nucleus has an important effect on the developmental potential of cloned embryos produced by somatic cell nuclear transfer (SCNT). In our previous study has results showed that the donor cells treated with 5-aza-2’- deoxyctidine (5-aza-dC, DNA methylation inhibitors) and Trichostatin A (TSA, histone deacetylase inhibitors) could improve the development of porcine nuclear transfer embryos in vitro. In this study we want to investigate why these two drugs treatment with the donor cell can improve the cloning efficiency, whether they can alter the epigenetic status of the genome of the donor nucleus. This study included 6 groups: control group, the donor cell (porcine fetal fibroblast cell) with no treatment; 2.5 nM 5-aza-dC group, the donor cells treated with 2.5 nM 5-aza-dC for 1h; 5-aza-dC group, the donor cells treated with 5 nM 5-aza-dC for 1h; TSA group, the donor cells treated with 50 nM TSA for 1h; 2.5 nM 5-aza-dC+TSA group, the donor cells treated with 2.5 nM 5-aza-dC for 1h and subsequently treated with 50 nM TSA for another 1h; 5-aza-dC+TSA group, the donor cells treated with 5 nM 5-aza-dC and 50 nM TSA together for 1h. The first experiment detected the DNA methylation status in the different groups. After treatment with these two drugs, the DNA methylation level of the donor cells decreased, however there is no significant difference among the groups. This result indicated that the donor cell treatment with 5-aza-dC and TSA can partially alter the DNA methylation status of the donor cells. The second experiment checked the histone acetylation level of the donor cells treated with these two drugs by western blot. TSA, 2.5 nM 5-aza-dC+TSA, 5 nM 5-aza-aC+TSA, these three groups can significantly improve the hisone acetylation level compared with control and 5-aza-dC groups, there is no significant difference among these three groups. The results of this study suggest that the donor cells treated with 5-aza-dC and TSA can partially decrease DNA methylation and can significantly improve the histone acetylation level of the donor cells, these alterations of the epigenetic modification maybe can improve the clonging efficiency.
        3.
        2011.10 구독 인증기관·개인회원 무료
        5‐aza‐2’‐deoxyctidine (5‐aza‐dC) is DNA methylation inhibitor and Trichostatin A (TSA) is histone deacytlase inhibitor, both of them can alter the level of the epigenetic modification of cells. The objective of this study was to investigate the effects of treatment with 5‐aza‐dC and TSA into fetal fibroblasts on the development of porcine nuclear transfer (NT) embryos. In this study, experiments were performed in order to modify epigenetic status in donor cells and evaluate developmental potential of NT embryos. 5‐ aza‐dC or TSA or combining treatment of TSA and 5‐aza‐dC was treated into growing donor cells for 1 h exposure and development of NT embryos was evaluated. Experiment was performed with 3 groups: control group (donor cells without treatment); TSA group (donor cell treated with 50 nM TSA for 1 h); TSA + 5‐aza‐dC group (donor cells were treated with 50 nM TSA and 5 nM 5‐aza‐dC for 1 h); TSA+1/2(5‐aza‐dC) group (donor cells were treated with 50 nM TSA for 1h and subsequently treated with 2.5 nM 5‐aza‐dC for another 1h). When donor cells were individually treated with 5 nM 5‐aza‐dC or 50 nM TSA for 1h, the blastocyst rate of NT embryos increased significantly compared with control group [18.8% vs 13.4% (5 nM 5‐aza‐dC group vs control group), and 26.2% vs 11.8% (50 nM TSA group vs control group), p<0.05]. However, the blastocyst rate in combining treatment group (50 nM TSA + 5 nM 5‐aza‐dC) did not increase compare with control group (12.3% vs 11.8%, p>0.05). When the donor cell were individually treated with 50nM TSA for 1 h firstly and then treated with 2.5 nM 5‐aza‐dC for another 1h, the blastocyst rate was significantly improved compared with control and TSA group (28% vs 10.2% and 23.7%, p<0.05). The present study suggested that donor cells treated with TSA or low concentration of TSA+5‐azadC in short time exposure may enhance the development of porcine NT embryo.