The ocean is linked to long-term climate variability, but there are very few methods to assess the short-term performance of forecast models. This study analyzes the short-term prediction performance regarding ocean temperature and salinity of the Global Seasonal prediction system version 5 (GloSea5). GloSea5 is a historical climate re-creation (2001-2010) performed on the 1st, 9th, 17th, and 25th of each month. It comprises three ensembles. High-resolution hindcasts from the three ensembles were compared with the Array for Real-Time Geostrophic Oceanography (ARGO) float data for the period 2001-2010. The horizontal position was preprocessed to match the ARGO float data and the vertical layer to the GloSea5 data. The root mean square error (RMSE), Brier Score (BS), and Brier Skill Score (BSS) were calculated for short-term forecast periods with a lead-time of 10 days. The results show that sea surface temperature (SST) has a large RMSE in the western boundary current region in Pacific and Atlantic Oceans and Antarctic Circumpolar Current region, and sea surface salinity (SSS) has significant errors in the tropics with high precipitation, with both variables having the largest errors in the Atlantic. SST and SSS had larger errors during the fall for the NINO3.4 region and during the summer for the East Sea. Computing the BS and BSS for ocean temperature and salinity in the NINO3.4 region revealed that forecast skill decreases with increasing lead-time for SST, but not for SSS. The preprocessing of GloSea5 forecasts to match the ARGO float data applied in this study, and the evaluation methods for forecast models using the BS and BSS, could be applied to evaluate other forecast models and/or variables.
Continued observation of ARGO floats for years(about 4 years) makes the conductivity sensor more vulnerable to fouling by marine life and associated drift in salinity measurements. In this paper, we address this issue by making use of floats deployed in different years. Floats deployed in the East Sea and the Indian Ocean are examined to find out float-to-float match-ups in such a way that an older float pops up simultaneously with a newer deployment (with tolerable space-time difference). A time difference of less than five days and space difference of less than 100km are considered for the match-up data sets. For analysis of the salinity drift under the stable water mass, observations of the floats from deepest water masses have been used. From the cross-check of ARGO floats in the East Sea and the Indian Ocean, it is found that there is a systematic drift in the older float compared to later deployments. All drift results, consistently show negative bias indicating the typical nature of drift from fouled sensors. However, the drift is much less than 0.01, the specified accuracy of ARGO program.
Drift data from 17 Argo profiling floats in the East Sea are used to understand the mean flow and its variability in the upper portion of the East Sea Proper Water (UESPW) (around 800 m). The flow penetrates into the Ulleung basin (UB) through two paths: an extension of the southward flowing of the North Korean Cold Water along the east coast of Korea and between Ulleung Island and Dok island. Flows at 800 m are observed in the range of from 0.2 to 4.29 cms-1 and the variability in the north of the UB is larger than that in the south of the UB. In the UB, cyclonic flows from 0.3 to 1.6 cms-1 are observed with the bottom topography. We found that the mean kinetic energy (MKE) and the mean eddy kinetic energy (EKE) are 1.3 and 2.1 cm2s-2 respectively