The collision effects in particles of the accretion disk are examined by the use of small perturbation. The collision force is assumed to be equal to 2 vV. From the equations governing collisions of such particles the local dispersion relation is obtained.
The collision model of the disk, based on collisions between the particles in the disk, is summarized. The dependence of disk stability on the collision of the particles is demonstrated. The energy spectrum produced in the disk is numerically calculated. We concluded that the results are not largely different from those of the standard disk model. It implies that the collision of the particles inside the disk may be considered here.
The collision of two particles in the accretion disk may lead to be a mechanism of heat generation. By using hydrodynamic equations, the mean free path, the collision frequency and the deflection angle due to the collision of the particles are derived as a function of the mass accretion rate. The mean free path seems to be a smaller fraction compared to the dimension parameter of the system. The radiative flux in the disk is obtained under the influence of the collision of the particles.