검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The carbon spheres (CSs) synthesized by an ultrasonic-spray pyrolysis method were activated for supercapacitor electrode. There are plenty of cracks on the surface of the activated carbon spheres (ACSs), which expend with increasing the activation temperature and activator dosage. The specific capacitance of ACSs increases with the activation temperature and activator dosage and reach to maximal value at certain conditions. Importantly, the ACS sample activated at relatively low activation temperature (600 °C) and 7 of mass ratio of KOH to CSs has the highest specific capacitance (about 209 F g− 1 at 50 mA g− 1 of current density) and indicates the excellent cycling stability after 1000 consecutive charge–discharge cycles. Furthermore, the graphene sheets could be found in the samples that were activated at 1000 °C. And the electrode prepared by the sample has the very low series resistance because of the excellent conductivity of the formed graphene sheets.
        4,000원
        2.
        2009.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Activated carbon spheres (ACS) were prepared at different heating rates by carbonization of the resole-type phenolic beads (PB) at 950℃ in N2 atmosphere followed by activation of the resultant char at different temperatures for 5 h in CO2 atmosphere. Influence of heating rate on porosity and temperature on carbon structure and porosity of ACS were investigated. Effect of heating rate and temperature on porosity of ACS was also studied from adsorption isotherms of nitrogen at 77 K using BET method. The results revealed that ACS have exhibited a BET surface area and pore volume greater than 2260 m2/g and 1.63 cm3/g respectively. The structural characteristics variation of ACS with different temperature was studied using Raman spectroscopy. The results exhibited that amount of disorganized carbon affects both the pore structure and adsorption properties of ACS. ACS were also evaluated for structural information using Fourier Transform Infrared (FTIR) Spectroscopy. ACS were evaluated for chemical composition using CHNS analysis. The ACS prepared different temperatures became more carbonaceous material compared to carbonized material. ACS have possessed well-developed pores structure which were verified by Scanning Electron Microscopy (SEM). SEM micrographs also exhibited that ACS have possessed well-developed micro- and meso-pores structure and the pore size of ACS increased with increasing activation temperature.
        4,000원
        3.
        2007.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Molecular sieving carbon (MSC) for separating O2-N2 and CO2-CH4 has been prepared through chemical vapor deposition (CVD) of methane and benzene on activated carbon spheres (ACS) derived from polystyrene sulfonate beads. The validity of the material for assessment of molecular sieving behavior for O2-N2 and CO2-CH4 pair of gases was assessed by the kinetic adsorption of the corresponding gases at 25℃. It was observed that methane cracking on ACS lead to deposition of carbon mostly in whole length of pores rather than in pore entrance, resulting in a reduction in adsorption capacity. MSC showing good selectivity for CO2-CH4 and O2-N2 separation was obtained through benzene cracking on ACS with benzene entrantment of 0.40×10-4 g/ml at cracking temperature of 725℃ for a period of 90 minutes resulting in a selectivity of 3.31:1.00 for O2-N2 and 8.00:1.00 for CO2-CH4 pair of gases respectively.
        4,000원