Background: The active knee extension (AKE) test commonly used to assess the flexibility of the hamstring muscles. Many researchers have tested the reliability of the AKE test; however, no published studies have examined the intrarater and interrater reliability of the AKE test using a PBU. Objects: The purpose of this study was to determine the intrarater and interrater reliability of the AKE test performed with a pressure biofeedback unit (PBU) on healthy subjects. Methods: Sixteen healthy male participants volunteered and gave informed consent to participate in this study. Two raters conducted AKE tests independently with a PBU. Each knee was measured twice, and the AKE testing was repeated one week after the first round of testing. Results: The interrater reliability’s intraclass correlation coefficients (ICC2,1) were .887∼.986 for the right knees and .915∼.988 for the left knees. In addition, the intrarater (test-retest) reliability (ICC3,1) values ranged between .820∼.915 and .820∼.884 for Raters 1 and 2, respectively. The values for the standard error of mesurement were low for all tests (.81∼2.97˚); the calculated minimum detectable change was 2.24∼8.21˚. Conclusion: These findings suggest that the AKE test performed with a PBU had excellent interrater and intrarater reliability for assessing hamstring flexibility in healthy young males.
The active-knee-extension (AKE) test has been used to measure hamstring muscle length. The traditional AKE test measures the popliteal angle to the point of resistance with a 90-degree flexion of the hip fixed by straps, while the stabilized AKE test measures the popliteal angle to the point of resistance with a 90-degree flexion of the hip stabilized using a pressure biofeedback unit providing lumbopelvic stabilization. The purpose of this study was to determine test-retest reliability of the traditional AKE test and stabilized AKE test. Twenty healthy adults participated in the study. The popliteal angles were measured with a digital inclinometer during each test. To assess the test-retest reliability between the 2 test sessions, intraclass correlation coefficients (ICCs) were calculated. The intrasubject coefficient of variation (CVintra) was also calculated. To compare the traditional and stabilized AKE tests for changes in pressure, paired t-tests were applied. The results of this study were as follows: 1) ICCs(3,1) value for test-retest reliability was .96 in the traditional AKE test, and was .98 in the stabilized AKE test. 2) The maximal CVintra was 33.7% in the traditional AKE test and 15.7% in the stabilized AKE test. 3) Differences of 6.1±2.1 mmHg in pressure were measured in the traditional AKE test, and differences of 1.2±1.0 mmHg in pressure were measured in the stabilized AKE test. The results show the traditional and stabilized AKE test to be highly reliable, with test-retest reliability. However, the stabilized AKE test represented less variation and more stabilization than the traditional AKE test. Further study is needed to measure the inter-rater reliability of the stabilized AKE test for generalization and clinical application.