The oxidation resistance of the diffusion aluminide bond coat (BC) is compromised largely by interdiffusion (ID) effects on coated turbine blades of aeroengines. The present study is designed to understand the influence of ID on βNiAl coatings or BC. In this regard, nickel substrate and CMSX-4 superalloy are deposited. In total, four sets of BCs are developed, i.e. pure βNiAl (on Ni substrate), simple βNiAl (on CMSX-4 substrate), Zr-βNiAl (on CMSX-4 substrate) and Pt-βNiAl (on CMSX-4 substrate). The main aim of this study is to understand the interdiffusion of Al, Zr and Pt during preparation and oxidation. In addition, the beneficial effects of both Zr and platinum are assessed. Pure βNiAl and simple βNiAl show Ni-outdiffusion, whereas for platinum inward diffusion to the substrate is noticed under vacuum treatment. Interestingly, Zr-βNiAl shows the least ID in all BCs and exhibit stability under both vacuum and oxidation treatments. However, its spallation resistance is slightly lower than that of Pt-βNiAl BC. All BCs show similar oxide growth trends, except for Zr-βNiAl, which exhibits two-stage oxidations, i.e. transient and steady-state. Moreover, it is suggested that the localized spallation in all BCs is caused by βNiAl - γ’-Ni3Al transformation.
The influence of NiCrAlY bond coating on the adhesion properties of an Fe thermal coating sprayed on an Al substrate was investigated. By applying a bond coat, an adhesion strength of 21MPa was obtained, which was higher than the 15.5MPa strength of the coating without the bond coat. Formation of cracks at the interface of the bond coat and the Al substrate was suppressed by applying the bond coat. Microstructural analysis of the coating interface using EBSD and TEM indicated that the dominant bonding mechanism was mechanical interlocking. Mechanical interlocking without crack defects in the coating interface may improve the adhesion strength of the coating. In conclusion, the use of an NiCrAlY bond coat is an effective method of improving the adhesion properties of thermal sprayed Fe coatings on Al substrates.