Background: In Taekwondo athletes, ankle sprain is the most common risk factor for injury. Repeated ankle injuries lead to weakness and imbalance of the ankle muscles, resulting in chronic ankle instability (CAI). Both the ankle and toe muscles contribute to the inversion and eversion of the foot at the subtalar joint. Therefore, it is necessary to consider the ankle and toe joint positions when measuring ankle invertor and evertor strength. Objects: This study aimed to compare the muscle strength and ratio differences of the ankle invertor and evertor muscles in both the toe and ankle positions between the CAI and uninjured sides in Taekwondo athletes. Methods: Fifteen Taekwondo athletes participated in this study. The isometric strengths of both the ankle invertor and evertor were determined in different ankle and toe positions (dorsiflexion with toe extension, dorsiflexion with toe flexion, plantarflexion with toe extension, and plantarflexion with toe flexion). Paired t-tests were used to determine the differences between the ankle invertor and evertor in strength and ratio according to toe and ankle positions between the ankle CAI side and the uninjured side. Results: The results demonstrated that ankle evertor strength significantly decreased in all ankle and toe positions on the CAI side (p < 0.05). In addition, significant differences were observed in the ratios of the ankle invertor and evertor strengths in the dorsiflexion with toe flexion, plantarflexion with toe extension, and plantarflexion with toe flexion positions (p < 0.05). Conclusion: The findings of this study suggest that athletes, trainers, and clinicians should consider ankle and toe positions when measuring invertor and evertor strength and develop ankle rehabilitation protocols for Taekwondo athletes with CAI.
Background: The peroneus longus (PL) and peroneus brevis (PB) function as the primary muscles of eversion, a movement closely associated with tibial external rotation for ankle mortise stability. Ankle motion and tibial rotation vary based on different ankle and knee positions. Objects: This study aimed to investigate the PL, PB, and biceps femoris (BF) muscle activation and eversion strength during side-lying isometric eversion exercise based on different ankle positions (neutral [N] and plantarflexion [PF]) and knee positions (90° flexion [KF] and extension [KE]). Methods: Thirty healthy adults with an Ankle Joint Functional Assessment Tool score of ≥ 22 were recruited (mean age = 24.8 ± 3.1 years). Maximal isometric eversion strength and submaximal muscle activation of the PL, PB and BF were measured during isometric eversion exercise in side-lying. A 2 × 2 repeated measures analysis of variance was performed to investigate differences in muscle activation and strength. Results: The PL and PB muscle activation showed significant main effects with the knee and ankle positions (p < 0.05); activation was greater in the KE and PF positions than in the KF and N positions. The BF muscle activation showed a significant interaction effect with knee and ankle positions, which was greater in knee extension and ankle plantarflexed (KEPF) position than in knee flexion and ankle plantarflexed (KFPF) position (p < 0.05). Eversion strength showed a significant main effect only in ankle position (p < 0.05) and was greater in the N position than in the PF position. Conclusion: The results of this study indicate that the KEPF position can be recommended to facilitate contraction of the PL and PB during side-lying eversion exercise. Furthermore, the effects of the knee-ankle positions should be considered for measuring ankle eversion strength and implementing the isometric submaximal side-lying eversion exercise.
Background: Ankle evertor muscles are important for preventing lateral ankle sprain. Since, the evertor muscles cross the ankle and toe joints, the position at which the ankle evertor muscle strength is measured is important. However, no studies have previously investigated the effect of ankle and toe positions on the strength of the ankle evertor muscle.
Objects: This study is aimed to determine the effect of various ankle and toe joint positions on the strength of the ankle evertor muscles in healthy subjects.
Methods: Eighteen healthy subjects participated in this study. Isometric ankle evertor strength of the dominant leg was determined in each subject in different ankle and toe positions (dorsiflexion (DF) with toe extension (TE), DF with toe flexion (TF), plantar flexion (PF) with TE, and PF with TF). A 2 by 2 repeated analysis of variance (ANOVA) was used to determine the difference in the evertor strength between the ankle positions (PF and DF) and toe positions (TE and TF).
Results: The results indicate that there was no significant ankle position by toe position interaction effect (p=.83). However, the ankle evertor strength was significantly increased in the ankle DF position than in the PF position (p<.01), and the ankle evertor strength during eversion with TE was significantly higher than eversion with TF (p<.01).
Conclusion: The findings of this study suggest that clinicians should consider the ankle and toe positions when measuring the muscle strength and during performance of selective muscle strengthening exercises of the ankle evertor muscles.