검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An Ant Colony Optimization Algorithm(ACO) is one of the frequently used algorithms to solve the Traveling Salesman Problem(TSP). Since the ACO searches for the optimal value by updating the pheromone, it is difficult to consider the distance between the nodes and other variables other than the amount of the pheromone. In this study, fuzzy logic is added to ACO, which can help in making decision with multiple variables. The improved algorithm improves computation complexity and increases computation time when other variables besides distance and pheromone are added. Therefore, using the algorithm improved by the fuzzy logic, it is possible to solve TSP with many variables accurately and quickly. Existing ACO have been applied only to pheromone as a criterion for decision making, and other variables are excluded. However, when applying the fuzzy logic, it is possible to apply the algorithm to various situations because it is easy to judge which way is safe and fast by not only searching for the road but also adding other variables such as accident risk and road congestion. Adding a variable to an existing algorithm, it takes a long time to calculate each corresponding variable. However, when the improved algorithm is used, the result of calculating the fuzzy logic reduces the computation time to obtain the optimum value.
        4,000원
        2.
        2019.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        It is one of the known methods to obtain the optimal solution using the Ant Colony Optimization Algorithm for the Traveling Salesman Problem (TSP), which is a combination optimization problem. In this paper, we solve the TSP problem by proposing an improved new ant colony optimization algorithm that combines genetic algorithm mutations in existing ant colony optimization algorithms to solve TSP problems in many cities. The new ant colony optimization algorithm provides the opportunity to move easily fall on the issue of developing local optimum values of the existing ant colony optimization algorithm to global optimum value through a new path through mutation. The new path will update the pheromone through an ant colony optimization algorithm. The renewed new pheromone serves to derive the global optimal value from what could have fallen to the local optimal value. Experimental results show that the existing algorithms and the new algorithms are superior to those of existing algorithms in the search for optimum values of newly improved algorithms.
        4,000원
        3.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Airline schedules are highly dependent on various factors of uncertainties such as unfavorable weather conditions, mechanical problems, natural disaster, airport congestion, and strikes. If the schedules are not properly managed to cope with such disturbances, the operational cost and performance are severely affected by the delays, cancelations, and so forth. This is described as a disruption. When the disruption occurs, the airline requires the feasible recovery plan returning to the normal operations in a timely manner so as to minimize the cost and impact of disruptions. In this research, an Ant Colony Optimization (ACO) algorithm with re-timing strategy is developed to solve the recovery problem for both aircraft and passenger. The problem consists of creating new aircraft routes and passenger itineraries to produce a feasible schedule during a recovery period. The suggested algorithm is based on an existing ACO algorithm that aims to reflect all the downstream effects by considering the passenger recovery cost as a part of the objective function value. This algorithm is complemented by re-timing strategy to effectively manage the disrupted passengers by allowing delays even on some of undisrupted flights. The delays no more than 15 minutes are accepted, which does not influence on the on-time performance of the airlines. The suggested method is tested on the real data sets from 2009 ROADEF Challenge, and the computational results are compared with the existing ones on the same data sets. The method generates the solution for most of problem set in 10 minutes, and the result generated by re-timing strategy is discussed for its impact.
        4,000원
        4.
        2011.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        고객의 요구에 대한 빠른 대응과 유연하고 효율적으로 새로운 제품을 적기에 개발하기 위해서는 제품 플랫폼에 기초한 대량 맞춤이 절실히 요구된다. 이러한 목적을 달성하기 위하여 기업들은 상대적으로 생산비용을 낮게 유지하면서 대량생산의 이점을 유지하고 동시에 고객의 요구사항을 만족시키기 위해, product family를 도입하고 가능하면 작은 변화를 통하여 제품의 다양성을 유지하고자 한다. Product family를 설계할 때 중요한 이슈 중에 하나는 제
        4,000원