This research was carried out to investigate seed germination and growth of the perennial plant Apocynum lancifolium under different NaCl concentrations, with a view for future cultivation on reclaimed land. Initial characterization revealed that the average length and weight of A. lancifolium seed pods was 133.6 mm and 0.23 g, respectively, and the thousand-grain weight was 0.59 g. Upon examining the effects of light on seed germination, we found germination to be 1.7% higher under light conditions (90%) than under dark conditions (88.3%). In terms of the response to salt stress, we found that 90% of seeds germinated in the 0.00%, 0.25%, and 0.50% salt treatment groups. Although salt treatment up to a concentration of 0.5% was found to have little effect on seed germination, the rate of germination decreased at higher concentrations and was completely inhibited in the 2% treatment. We also established that germination rates were higher in seeds sown in horticultural topsoil than in the coarse sandy soil found in the plant’s natural habitats. Although the growth of A. lancifolium tends to decrease with an increase in salt concentration, we found that the stem thickness, fresh weight, and dry weight of A. lancifolium seedlings subjected to 0.25%–1.0% salt were comparable to those of the control seedling that were not exposed to salt. Furthermore, in contrast to those plants subjected to 2.0% salt, these plants continued to grow and remained viable.
This study characterizes the volatile aromatic and metabolite components of domestic native Apocynum lancifolium blossom. The accurate characterization of fragrances collected from the blossom was carried out using gas chromatography-mass. A total of 70 chemical components were identified, including ketones of acetophenone (29.22%), phenylethyl alcohol (10.54%), methyl-benzenemethanol (8.43%), benzyl alcohol (7.97%), natural bicyclic sesquiterpene types of caryophyllene (6.08%), gurjunene (6.20%), humulene (1.90%), and ocimene (1.04%). Overall, the content of ketones, alcohols, and terpenes was higher than that of others. The major metabolite components were pentanoic acid, malic acid, fructofuranoside, quinic acid, tagatose, sorbose, galactose, inositol, galactaric acid, glucopyranoside, and octadecenoic acid.