검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2018.10 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 SWAT 모형과 random forest를 이용하여 미래 기후변화에 따른 한강유역(34,148 km2)의 수생태계 건강성을 평가하였다. 국립 환경과학원에서 8년간(2008~2015년) 봄철(4~6월)에 모니터링한 부착돌말류 지수(TDI), 저서형 대형무척추동물지수(BMI), 어류평가지수(FAI)는 0~100점, A~E등급으로 평가되며, 이를 본 연구에서 사용하였다. 수생태 건강성에 영향을 미치는 변수로는 수질(T-N, NH4, NO3, T-P, PO4)과 수온을 선정하였으며, 수질 오염도가 낮은 경우에는 수생태계 건강성 점수가 광범위하게 분포되지만 수질 오염도가 높은 경우 수생태계 건강성 점수가 낮아지는 역상관관계를 확인하였다. 기계학습의 분류 분석 기법 중 하나인 random forest 모델을 이용한 세 개의 수생태 건강성 지수 등급 분류 결과 정밀도, 재현율, f1-score 모두 0.81 이상의 예측 정확도를 나타내었다. 기상청의 HadGEM3-RA RCP 4.5와 8.5 시나리오를 적용한 미래 SWAT 수문, 수질 결과 기저유출의 증가로 인해 질소 계열 수질 농도는 기준년도 대비 최대 43.2% 증가하였고, 지표유출 감소로 인해 인 계열 수질 오염도는 최대 18.9% 감소하는 것으로 분석되었다. 미래 FAI, BMI의 등급은 개선되는 경향을 보이지만 TDI는 등급이 악화되는 것으로 나타 났다. 이를 통해 TDI는 질소 계열 수질에 민감하고 FAI, BMI는 인 계열 수질에 더 민감하다고 판단하였다.