The importance of Structural Health Monitoring (SHM) in the industry is increasing due to various loads, such as earthquakes and wind, having a significant impact on the performance of structures and equipment. Estimating responses is crucial for the effective health management of these assets. However, using numerous sensors in facilities and equipment for response estimation causes economic challenges. Additionally, it could require a response from locations where sensors cannot be attached. Digital twin technology has garnered significant attention in the industry to address these challenges. This paper constructs a digital twin system utilizing the Long Short-Term Memory (LSTM) model to estimate responses in a pipe system under simultaneous seismic load and arbitrary loads. The performance of the data-driven digital twin system was verified through a comparative analysis of experimental data, demonstrating that the constructed digital twin system successfully estimated the responses.