검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2023.05 구독 인증기관·개인회원 무료
        LiCl-KCl eutectic possesses unique properties such as a low melting point, high thermal conductivity, and good electrical conductivity. These properties make it suitable for various applications, including nuclear power generation, pyroprocessing in nuclear waste management, and thermal energy storage systems. In most experiments using LiCl-KCl, the molten salt composition is an important factor; therefore, periodic analysis through sampling is necessary for monitoring compositional changes. Although manual sampling is typically used, it is time-consuming and can introduce errors due to low reproducibility. To address this issue, we have developed an automatic molten salt sampling device using the cold-finger method. This method involves immersing the tip of a tungsten rod in hightemperature LiCl-KCl, removing it after a few seconds, and allowing the adhered molten salt to solidify instantly. A collector then scratches and drops the solidified sample. These processes are carried out automatically using servo motors, enabling the sampling device to move around the molten salt system. We have optimized the sampling conditions, such as insertion and withdrawal rate, immersion time, and the interval between continuous sampling, based on the molten salt temperature. The temperature was set between 500°C and 850°C, considering the operating temperatures of the applications. In addition to sampling speed, the sampling depth is a key condition for determining the sampling mass. Therefore, we examined the amount of sample depending on the sampling depth and, particularly, considered the change in salt height when sampling is performed continuously. As a result, we determined the number of sampling iterations required to reach the target sample mass. Furthermore, to minimize the initial salt loss, we noted that sampling from the salt surface resulted in less representative samples. To determine the reliability, we compared the results of surface sampling with those obtained when sampling at the middle of the salt. This study will enable highly reproducible and reliable sampling by providing a prototype for an automatic sampling device for molten salt along with guidelines.