tasks that require nematode extraction and microscopic examination. To develop a more efficient detection method for Bursaphelenchus xylophilus, we first generated monoclonal antibodies (MAbs) specific to B. xylophilus. Among 2,304 hybridoma fusions screened, a hybridoma clone named 3-2A7-2H5 recognized a single protein from B. xylophilus specifically. We finally selected the MAb clone 3-2A7-2H5-D9-F10 (D9-F10) for further studies. To identify the antigenic target of MAb-D9-F10, we analyzed proteins in spots, fractions or bands via nano liquid chromatography electrospray ionization quadrupole ion trap mass spectrometry (nano-LC-ESI-Q-IT-MS). Peptides of galactose-binding lectin-1 of B. xylophilus (Bx-LEC-1) were commonly detected in several proteomic analyses, demonstrating that this LEC-1 is the antigenic target of MAb-D9-F10. The localization of MAb-D9-F10 immunoreactivities at the area of the median bulb and esophageal glands suggested that the Bx-LEC-1 may be involved in food perception and digestion. The Bx-LEC-1 has two non-identical galactose-binding lectin domains important for carbohydrate binding. The affinity of the Bx-LEC-1 to D-(+)-raffinose and N-acetyllactosamine were much higher than that to L-(+)-rhamnose. Based on this combination of evidences, MAb-D9-F10 is the first identified molecular biomarker specific to the Bx-LEC-1.
To define the relations between endogenous GA levels and growth and flowering in short-day plant sorghum, growth retardant BX-112 was applied to two sorghum genotypes, wild-type and phytochrome B mutant (phyB-1), which grows faster and flowers earlier than the wild-type. BX-112 and GA3 were applied as a soil drench, and plant height, culm length, and date to floral initiation were investigated. Endogenous GAs contents were measured with GC-MS-SIM. BX-112 treatments inhibited shoot growth in both genotypes and drastically reduced GA1 and GA8 levels. With increasing BX-112 concentrations, GA1 concentrations declined linearly, but caused the accumulation of intermediates from GA12 to GA20 . This result implies that GA1 is the major active endogenous GA in shoot elongation in a short day plant sorghum. The inhibition of plant growth in both of wild type and phyB-1 by BX-112 was very similar, while BX-112 effects on floral initiation in two types of plants differed significantly. Floral initiation of phyB-1 was not affected by BX-1l2, but that of wild-type was delayed as BX-1l2 concentration increased. Because BX-112 treatment causes accumulation of biosynthetic intermediates between synthetic pathway from GA12 to GA20 and because phyB-1 is altered in GA metabolism in this same region of the early C13-hydroxylation pathway, BX-112 may fail to block flowering of phyB-1.