검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The objective of this study is to evaluate the structural capacity of asphalt pavement in subsurface cavity sections using falling weight deflectometer (FWD) backcalculation method. METHODS: It is necessary to analyze the reduction of structural capacity in asphalt pavements due to the occurrence of subsurface cavities. The FWD testing was conducted on the cavity and intact asphalt pavement in the city of Seoul. The GAPAVE, backcalculation program for FWD deflections, was utilized to determine the layer moduli in asphalt pavements. The remaining life of asphalt pavements in cavity sections were predicted using the pavement performance model for fatigue cracking. The backcalculated layer moduli between cavity and intact sections were compared to determine the reduction of structural capacity due to subsurface cavity. The relationship between the reduction of layer modulus and cavity depth/length was analyzed to estimate the effect of cavity characteristics on the structural capacity degradation. RESULTS: According to the FWD backcalculation results, the modulus of asphalt layer, subbase, and subgrade in cavity sections are generally lower than those in intact sections. In the case of asphalt layers, the backcalculated modulus in cavity section was reduced by 50% compared to intact section. A study for the prediction of remaining life of cavity section shows that the occurrence of subsurface cavity induces the decrease of the pavement life significantly. It is found that there is no close relationship between the backcalculated modulus and cavity length. However, the reduction of asphalt layer modulus is highly correlated with the cavity depth and was found to increase with the decrease of cavity depth. CONCLUSIONS : This reduction of structural capacity due to the occurrence of cavities underneath asphalt pavements was determined using FWD backcalculation analysis. In the future, this approach will be utilized to establish the criteria of road collapse risk and predict the remaining life of cavity sections under numerous varied conditions.
        4,000원
        2.
        2007.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        동일한 물성을 가지는 포장이라도 포장의 구조적인 형상에 따라 역해석 결과가 다르게 나타난다. 본 논문에서는, 구조적인 형상을 고정하고 동적 하중을 모사하는 3차원 유한요소모델을 만들어 얻어진 최대 처짐과 AREA의 분포를 통해서 물성을 추정하는 수정된 AREA 도표를 제안하였다. 제안된 도표를 이용하여 단일 무한 슬래브에 대한 민감도 분석 결과 노상의 깊이가 질어지면 처짐과 AREA가 증가하는 것으로 나타났고 4.0m이상에서는 큰 차이를 나타내지 않았다. 층별 물성과 노상 깊이가 같은 경우 단일 무한 슬래브 모델과 다중 유한 슬래브 모델을 비교하는 경우 다중 유한 슬래브 모델의 처짐과 AREA가 더 크게 나타났다.
        4,000원