Republic of Korea is building a multi-layered missile defense system against North Korea’s growing ballistic missile threat. To maximize the intercept performance of a multi-layered missile defense system, it is important to develop an efficient engagement plan that considers the interceptable time/space of each interceptor system for ballistic missiles. To do so, it is necessary to predict the flight trajectory of the ballistic missile, which must be done within a short time considering the short battlefield environment and the speed of the ballistic missile. This study presents a model for rapid trajectory prediction of ballistic missiles using the kinetic characteristics of each flight phase(thrust phase, midcourse phase, and re-entry phase) of ballistic missiles, a method for estimating kinetic information from ballistic missile observation data(time and position), and a mathematical analysis of the equations of motion of ballistic missiles.
When offense launches missiles at valuable assets of the defense, the defense must assign its weapons to these missiles so as to maximize the total value of surviving assets threatened by them. Recently, a new asset-based linear approximation model was proposed for weapon target assignment problem with shootlook- shoot engagement policy and fixed set-up time between each anti-missile launch from each defense unit. In this paper, we apply the proposed to several ballistic missile defense examples and we show their weapon target assignment results specified with launch order time.