The Magneto-Rheological fluid is the suspended material having the ferromagnetic particles with micrometer size that can change properties by applying magnetic fields. In this paper, the shape design of the T-Flange Magneto-Rheological brake is conducted theoretically. The equations for transmitted torque are derived according to T-Flange configurations of the Magneto-Rheological brake. This feature has more output torque than conventional types. The validity of theoretical results is verified by conducting an analysis of an electromagnet using the finite element method. Then the effectiveness of braking torque is verified to reinforce by comparing the output torque of the conventional Magneto-Rheological brakes.