This study investigated therapeutic effects of pelvic tilt exercise (PTE) on weight bearing and body sway during sit-to-stand (STS) on 18 hemiplegic patients who had visited the Hanyang University Seoul Hospital and Injae University Sanggyebek Hospital physiotherapy rooms. The study compared the patients with 18 normal adults. The subjects were sampled out from those who could get up independently, maintain a standing posture more than 10 seconds, understand the movements of this study and have no difficulty in performing the tasks. By executing STS in a natural way with habitual movements before and after PTE, the weight bearing was measured by using Mediance II. In order to compare the difference of weight distribution, weight bearing and body sway on affected and nonaffected sides during STS before and after PTE, the Wilcoxon Signed Ranks Test was used. The statistical significance level was based on p<.05. The results revealed that the difference of weight distribution in the hemiplegic group was significantly decreased (p<.05), whereas there was no significant difference in the healthy group (p>.05). Weight bearing loaded on the affected side was 42.53±7.65% and 44.20±6.32%, respectively, in the hemiplegic group during STS before and after PTE. Weight bearing during STS after PTE is increased significantly, as compared with weight bearing before PTE (p<.05). Body sway in the hemiplegic group was significantly decreased (p<.05). As mentioned, PTE proved to be effective for improvement in weight bearing on the affected side during STS of hemiplegic patients.
The purposes of this study were to assess variation of body sway prior to and after submaximal treadmill exercise; to determine the time course of the effects of a fatiguing performed on a treadmill on body sway; and to compare position sense prior to and after exercise in order to assess any variance in proprioception caused by submaximal treadmill exercise. The subjects were twenty-four healthy men in their twenties. They stood barefoot on the Kinesthetic Ability Training Balance Platform to measure body sway. Control trials were performed with eyes alternately open and closed. In the eyes open condition, they were asked to look at a target placed at eye level 1 m in front them. A total of 10 trials, each lasting 20 seconds, were performed. After this series of trials, position sense was measured. Subjects then exercised on the treadmill until 85% of each person's maximal heart rate was reached. The first series of postural sway measurements began immediately after this exercise. The second identical series of postural sway trials was performed at approximately 10 minutes after exercise. The third series was performed approximately 20 minutes after exercise. This allowed approximately 5 minutes of rest between each experimental series. Position sense was measured at approximately 15 and 25 minutes after exercise. The results were as follows: 1) There was a significant increase in body sway after submaximal treadmill exercise compared to pre-exercise values under both visual conditions (p<.05). 2) After submaximal treadmill exercise, under the eyes open condition, the mean value of body sway was significantly increased after both the first and second series (p<.05). Under the eyes closed condition, the mean value of body sway increased significantly after the first series but decreased significantly after the third series (p<.05). 3) Position sense, measured repeatedly after submaximal treadmill exercise, did not change significantly with respect to pre-exercise values (p>.05). These results suggest that fatigue induced by submaximal treadmill exercise produced an increase in body sway in young healthy subjects with or without visual input, but the increase appeared to be lasting less than 15 minutes. No significant change in position sense suggested that proprioception was unaffected by submaximal treadmill exercise-induced fatigue.